
Eve Documentation
Release 2.1.0

Nicola Iarocci

Mar 14, 2023

CONTENTS

1 Eve is Simple 3

2 Funding Eve 5
2.1 Foreword . 5
2.2 REST API for Humans . 6
2.3 Installation . 7
2.4 Quickstart . 8
2.5 Features . 13
2.6 Configuration . 50
2.7 Data Validation . 70
2.8 Authentication and Authorization . 73
2.9 Funding . 83
2.10 Tutorials . 84
2.11 Snippets . 96
2.12 Extensions . 100
2.13 How to contribute . 103
2.14 Support . 106
2.15 Updates . 107
2.16 Authors . 107
2.17 Licensing . 113
2.18 Changelog . 114

Index 151

i

ii

Eve Documentation, Release 2.1.0

Version 2.1.0.

Eve is an open source Python REST API framework designed for human beings. It allows to effortlessly build and
deploy highly customizable, fully featured RESTful Web Services.

Eve is powered by Flask and Cerberus and it offers native support for MongoDB data stores. Support for SQL, Elas-
ticsearch and Neo4js backends is provided by community extensions.

The codebase is thoroughly tested under Python 3.7+, and PyPy.

CONTENTS 1

https://pypi.org/project/eve
https://github.com/pyeve/eve/actions?query=workflow%3ACI
https://pypi.org/project/eve
https://en.wikipedia.org/wiki/BSD_License
http://flask.pocoo.org/
http://python-cerberus.org
https://mongodb.org
http://python-eve.org/extensions.html

Eve Documentation, Release 2.1.0

2 CONTENTS

CHAPTER

ONE

EVE IS SIMPLE

from eve import Eve

settings = {'DOMAIN': {'people': {}}}

app = Eve(settings=settings)
app.run()

The API is now live, ready to be consumed:

$ curl -i http://example.com/people
HTTP/1.1 200 OK

All you need to bring your API online is a database, a configuration file (defaults to settings.py) or dictionary, and
a launch script. Overall, you will find that configuring and fine-tuning your API is a very simple process.

3

Eve Documentation, Release 2.1.0

4 Chapter 1. Eve is Simple

CHAPTER

TWO

FUNDING EVE

Eve REST framework is a collaboratively funded project. If you run a business and are using Eve in a revenue-
generating product, it would make business sense to sponsor Eve development: it ensures the project that your product
relies on stays healthy and actively maintained. Individual users are also welcome to make either a recurring pledge or
a one time donation if Eve has helped you in your work or personal projects. Every single sign-up makes a significant
impact towards making Eve possible.

You can support Eve development by pledging on GitHub, Patreon, or PayPal.

• Become a Backer on GitHub

• Become a Backer on Patreon

• Donate via PayPal (one time)

2.1 Foreword

Read this before you get started with Eve. This hopefully answers some questions about the purpose and goals of the
project, and when you should or should not be using it.

2.1.1 Philosophy

You have data stored somewhere and you want to expose it to your users through a RESTful Web API. Eve is the tool
that allows you to do so.

Eve provides a robust, feature rich, REST-centered API implementation, and you just need to configure your API
settings and behavior, plug in your datasource, and you’re good to go. See Features for a list of features available to
Eve-powered APIs. You might want to check the REST API for Humans slide deck too.

API settings are stored in a standard Python module (defaults to settings.py), which makes customization quite a
trivial task. It is also possible to extend some key features, namely Authentication and Authorization, Data Validation
and Data Access, by providing the Eve engine with custom objects.

5

https://github.com/sponsors/nicolaiarocci
https://www.patreon.com/nicolaiarocci
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=7U7G7EWU7EPNW

Eve Documentation, Release 2.1.0

2.1.2 A little context

At Gestionale Amica we had been working hard on a full featured, Python powered, RESTful Web API. We learned
quite a few things on REST best patterns, and we had a chance to put Python’s renowned web capabilities to the test.
Then, at EuroPython 2012, I had the opportunity to share what we learned. My talk sparked quite a bit of interest, and
even after a few months had passed, the slides were still receiving a lot of hits every day. I kept receiving emails asking
for source code examples and whatnot. After all, a REST API lies in the future of every web-oriented developer, and
who isn’t one these days?

So, I thought, perhaps I could take the proprietary, closed code (codenamed ‘Adam’) and refactor it “just a little bit”,
so that it could fit a much wider number of use cases. I could then release it as an open source project. Well it turned
out to be slightly more complex than that but finally here it is, and of course it’s called Eve.

2.1.3 REST, Flask and MongoDB

The slides from my EuroPython talk, Developing RESTful Web APIs with Flask and MongoDB, are available online.
You might want to check them out to understand why and how certain design decisions were made, especially with
regards to REST implementation.

2.1.4 BSD License

A large number of open source projects you find today are GPL Licensed. While the GPL has its time and place, it
should most certainly not be your go-to license for your next open source project.

A project that is released as GPL cannot be used in any commercial product without the product itself also being offered
as open source.

The MIT, BSD, ISC, and Apache2 licenses are great alternatives to the GPL that allow your open-source software to
be used freely in proprietary, closed-source software.

Eve is released under terms of the BSD License. See Licensing.

2.2 REST API for Humans

I have been introducing Eve at several conferences and meetups. A few people suggested that I post the slides on the
Eve website, so here it is: a quick rundown on Eve features, along with a few code snippets and examples. Hopefully
it will do a good job in letting you decide whether Eve is valid solution for your use case.

• REST API for Humans @ SpeakerDeck

2.2.1 Conferences

Eve REST API for Humans™ has been presented at the following events so far:

• PyConWeb 2018, Munich

• PyCon Belarus 2018, Kiev

• Codemotion 2017, Rome

• PiterPy 2016, St. Petersburg

• Percona Live 2015, Amsterdam

• EuroPython 2014, Berlin

6 Chapter 2. Funding Eve

http://gestionaleamica.com
https://speakerdeck.com/u/nicola/p/developing-restful-web-apis-with-python-flask-and-mongodb
https://speakerdeck.com/nicola/eve-rest-api-for-humans

Eve Documentation, Release 2.1.0

• Python Meetup, Helsinki

• PyCon Italy 2014, Florence

• PyCon Sweden 2014, Stockholm

• FOSDEM 2014, Brussels

Want this talk delivered at your conference? Get in touch!

2.3 Installation

This part of the documentation covers the installation of Eve. The first step to using any software package is getting it
properly installed.

Installing Eve is simple with pip:

$ pip install eve

2.3.1 Development Version

Eve is actively developed on GitHub, where the code is always available. If you want to work with the development
version of Eve, there are two ways: you can either let pip pull in the development version, or you can tell it to operate
on a git checkout. Either way, virtualenv is recommended.

Get the git checkout in a new virtualenv and run in development mode.

$ git clone https://github.com/pyeve/eve.git
Cloning into 'eve'...
...

$ cd eve
$ virtualenv venv
...
Installing setuptools, pip, wheel...
done.

$. venv/bin/activate
$ pip install .
...
Successfully installed ...

This will pull in the dependencies and activate the git head as the current version inside the virtualenv. Then all you
have to do is run git pull origin to update to the latest version.

To just get the development version without git, do this instead:

$ mkdir eve
$ cd eve
$ virtualenv venv
$. venv/bin/activate
$ pip install git+https://github.com/pyeve/eve.git
...
Successfully installed ...

2.3. Installation 7

mailto:nicola@nicolaiarocci.com
https://pip.pypa.io/en/stable/
https://github.com/pyeve/eve

Eve Documentation, Release 2.1.0

And you’re done!

2.4 Quickstart

Eager to get started? This page gives a first introduction to Eve.

2.4.1 Prerequisites

• You already have Eve installed. If you do not, head over to the Installation section.

• MongoDB is installed.

• An instance of MongoDB is running.

2.4.2 A Minimal Application

A minimal Eve application looks something like this:

from eve import Eve
app = Eve()

if __name__ == '__main__':
app.run()

Just save it as run.py. Next, create a new text file with the following content:

DOMAIN = {'people': {}}

Save it as settings.py in the same directory where run.py is stored. This is the Eve configuration file, a standard Python
module, and it is telling Eve that your API is comprised of just one accessible resource, people.

Now your are ready to launch your API.

$ python run.py
* Running on http://127.0.0.1:5000/

Now you can consume the API:

$ curl -i http://127.0.0.1:5000
HTTP/1.0 200 OK
Content-Type: application/json
Content-Length: 82
Server: Eve/0.0.5-dev Werkzeug/0.8.3 Python/2.7.3
Date: Wed, 27 Mar 2013 16:06:44 GMT

Congratulations, your GET request got a nice response back. Let’s look at the payload:

{
"_links": {
"child": [
{
"href": "people",

(continues on next page)

8 Chapter 2. Funding Eve

http://docs.mongodb.org/manual/installation/
http://docs.mongodb.org/manual/tutorial/manage-mongodb-processes/

Eve Documentation, Release 2.1.0

(continued from previous page)

"title": "people"
}

]
}

}

API entry points adhere to the HATEOAS principle and provide information about the resources accessible through the
API. In our case there’s only one child resource available, that being people.

Try requesting people now:

$ curl http://127.0.0.1:5000/people

{
"_items": [],
"_links": {
"self": {
"href": "people",
"title": "people"

},
"parent": {
"href": "/",
"title": "home"

}
},
"_meta": {
"max_results": 25,
"page": 1,
"total": 0

}
}

This time we also got an _items list. The _links are relative to the resource being accessed, so you get a link to the
parent resource (the home page) and to the resource itself. If you got a timeout error from pymongo, make sure the
prerequisites are met. Chances are that the mongod server process is not running.

By default Eve APIs are read-only:

$ curl -X DELETE http://127.0.0.1:5000/people
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<title>405 Method Not Allowed</title>
<h1>Method Not Allowed</h1>
<p>The method DELETE is not allowed for the requested URL.</p>

Since we didn’t provide any database detail in settings.py, Eve has no clue about the real content of the people collection
(it might even be non-existent) and seamlessly serves an empty resource, as we don’t want to let API users down.

2.4. Quickstart 9

Eve Documentation, Release 2.1.0

2.4.3 Database Interlude

Let’s connect to a database by adding the following lines to settings.py:

Let's just use the local mongod instance. Edit as needed.

Please note that MONGO_HOST and MONGO_PORT could very well be left
out as they already default to a bare bones local 'mongod' instance.
MONGO_HOST = 'localhost'
MONGO_PORT = 27017

Skip this block if your db has no auth. But it really should.
MONGO_USERNAME = '<your username>'
MONGO_PASSWORD = '<your password>'
Name of the database on which the user can be authenticated,
needed if --auth mode is enabled.
MONGO_AUTH_SOURCE = '<dbname>'

MONGO_DBNAME = 'apitest'

Due to MongoDB laziness, we don’t really need to create the database collections. Actually we don’t even need to create
the database: GET requests on an empty/non-existent DB will be served correctly (200 OK with an empty collection);
DELETE/PATCH/PUT will receive appropriate responses (404 Not Found), and POST requests will create database
and collections as needed. However, such an auto-managed database will perform very poorly since it lacks indexes
and any sort of optimization.

2.4.4 A More Complex Application

So far our API has been read-only. Let’s enable the full spectrum of CRUD operations:

Enable reads (GET), inserts (POST) and DELETE for resources/collections
(if you omit this line, the API will default to ['GET'] and provide
read-only access to the endpoint).
RESOURCE_METHODS = ['GET', 'POST', 'DELETE']

Enable reads (GET), edits (PATCH), replacements (PUT) and deletes of
individual items (defaults to read-only item access).
ITEM_METHODS = ['GET', 'PATCH', 'PUT', 'DELETE']

RESOURCE_METHODS lists methods allowed at resource endpoints (/people) while ITEM_METHODS lists the methods
enabled at item endpoints (/people/<ObjectId>). Both settings have a global scope and will apply to all endpoints.
You can then enable or disable HTTP methods at individual endpoint level, as we will soon see.

Since we are enabling editing we also want to enable proper data validation. Let’s define a schema for our people
resource.

schema = {
Schema definition, based on Cerberus grammar. Check the Cerberus project
(https://github.com/pyeve/cerberus) for details.
'firstname': {

'type': 'string',
'minlength': 1,
'maxlength': 10,

(continues on next page)

10 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

(continued from previous page)

},
'lastname': {

'type': 'string',
'minlength': 1,
'maxlength': 15,
'required': True,
talk about hard constraints! For the purpose of the demo
'lastname' is an API entry-point, so we need it to be unique.
'unique': True,

},
'role' is a list, and can only contain values from 'allowed'.
'role': {

'type': 'list',
'allowed': ["author", "contributor", "copy"],

},
An embedded 'strongly-typed' dictionary.
'location': {

'type': 'dict',
'schema': {

'address': {'type': 'string'},
'city': {'type': 'string'}

},
},
'born': {

'type': 'datetime',
},

}

For more information on validation see Data Validation.

Now let’s say that we want to further customize the people endpoint. We want to:

• set the item title to person

• add an extra custom item endpoint at /people/<lastname>

• override the default cache control directives

• disable DELETE for the /people endpoint (we enabled it globally)

Here is how the complete people definition looks in our updated settings.py file:

people = {
'title' tag used in item links. Defaults to the resource title minus
the final, plural 's' (works fine in most cases but not for 'people')
'item_title': 'person',

by default the standard item entry point is defined as
'/people/<ObjectId>'. We leave it untouched, and we also enable an
additional read-only entry point. This way consumers can also perform
GET requests at '/people/<lastname>'.
'additional_lookup': {

'url': 'regex("[\w]+")',
'field': 'lastname'

},
(continues on next page)

2.4. Quickstart 11

Eve Documentation, Release 2.1.0

(continued from previous page)

We choose to override global cache-control directives for this resource.
'cache_control': 'max-age=10,must-revalidate',
'cache_expires': 10,

most global settings can be overridden at resource level
'resource_methods': ['GET', 'POST'],

'schema': schema
}

Finally we update our domain definition:

DOMAIN = {
'people': people,

}

Save settings.py and launch run.py. We can now insert documents at the people endpoint:

$ curl -d '[{"firstname": "barack", "lastname": "obama"}, {"firstname": "mitt", "lastname
→˓": "romney"}]' -H 'Content-Type: application/json' http://127.0.0.1:5000/people
HTTP/1.0 201 OK

We can also update and delete items (but not the whole resource since we disabled that). We can also perform GET
requests against the new lastname endpoint:

$ curl -i http://127.0.0.1:5000/people/obama
HTTP/1.0 200 OK
Etag: 28995829ee85d69c4c18d597a0f68ae606a266cc
Last-Modified: Wed, 21 Nov 2012 16:04:56 GMT
Cache-Control: 'max-age=10,must-revalidate'
Expires: 10
...

{
"firstname": "barack",
"lastname": "obama",
"_id": "50acfba938345b0978fccad7"
"updated": "Wed, 21 Nov 2012 16:04:56 GMT",
"created": "Wed, 21 Nov 2012 16:04:56 GMT",
"_links": {

"self": {"href": "people/50acfba938345b0978fccad7", "title": "person"},
"parent": {"href": "/", "title": "home"},
"collection": {"href": "people", "title": "people"}

}
}

Cache directives and item title match our new settings. See Features for a complete list of features available and more
usage examples.

12 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

2.5 Features

Below is a list of main features that any EVE-powered APIs can expose.

2.5.1 Emphasis on REST

The Eve project aims to provide the best possible REST-compliant API implementation. Fundamental REST prin-
ciples like separation of concerns, stateless and layered system, cacheability, uniform interface have been kept into
consideration while designing the core API.

2.5.2 Full range of CRUD operations

APIs can support the full range of CRUD operations. Within the same API, you can have a read-only resource ac-
cessible at one endpoint, along with a fully editable resource at another endpoint. The following table shows Eve’s
implementation of CRUD via REST:

Action HTTP Verb Context
Create POST Collection
Create PUT Document
Replace PUT Document
Read GET, HEAD Collection/Document
Update PATCH Document
Delete DELETE Collection/Document

Overriding HTTP Methods

As a fallback for the odd client not supporting any of these methods, the API will gladly honor
X-HTTP-Method-Override requests. For example a client not supporting the PATCH method could send a POST
request with a X-HTTP-Method-Override: PATCH header. The API would then perform a PATCH, overriding the
original request method.

2.5.3 Customizable resource endpoints

By default, Eve will make known database collections available as resource endpoints (persistent identifiers in REST
idiom). So a database people collection will be available at the example.com/people API endpoint. You can
customize the URIs though, so the API endpoint could become, say, example.com/customers/overseas. Consider
the following request:

$ curl -i http://myapi.com/people
HTTP/1.1 200 OK

The response payload will look something like this:

{
"_items": [

{
"firstname": "Mark",
"lastname": "Green",
"born": "Sat, 23 Feb 1985 12:00:00 GMT",

(continues on next page)

2.5. Features 13

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Eve Documentation, Release 2.1.0

(continued from previous page)

"role": ["copy", "author"],
"location": {"city": "New York", "address": "4925 Lacross Road"},
"_id": "50bf198338345b1c604faf31",
"_updated": "Wed, 05 Dec 2012 09:53:07 GMT",
"_created": "Wed, 05 Dec 2012 09:53:07 GMT",
"_etag": "ec5e8200b8fa0596afe9ca71a87f23e71ca30e2d",
"_links": {

"self": {"href": "people/50bf198338345b1c604faf31", "title": "person"},
},

},
...

],
"_meta": {

"max_results": 25,
"total": 70,
"page": 1

},
"_links": {

"self": {"href": "people", "title": "people"},
"parent": {"href": "/", "title": "home"}

}
}

The _items list contains the requested data. Along with its own fields, each item provides some important, additional
fields:

Field Description
_created item creation date.
_updated item last updated on.
_etag ETag, to be used for concurrency control and conditional requests.
_id unique item key, also needed to access the individual item endpoint.

These additional fields are automatically handled by the API (clients don’t need to provide them when adding/editing
resources).

The _meta field provides pagination data and will only be there if Pagination has been enabled (it is by default). The
_links list provides HATEOAS directives.

Sub Resources

Endpoints support sub-resources so you could have something like: people/<contact_id>/invoices. When set-
ting the url rule for such an endpoint you would use a regex and assign a field name to it:

invoices = {
'url': 'people/<regex("[a-f0-9]{24}"):contact_id>/invoices'
...

Then, a GET to the following endpoint:

people/51f63e0838345b6dcd7eabff/invoices

would cause the underlying database to be queried like this:

14 Chapter 2. Funding Eve

http://en.wikipedia.org/wiki/HATEOAS

Eve Documentation, Release 2.1.0

{'contact_id': '51f63e0838345b6dcd7eabff'}

And this one:

people/51f63e0838345b6dcd7eabff/invoices?where={"number": 10}

would be queried like:

{'contact_id': '51f63e0838345b6dcd7eabff', "number": 10}

Please note that when designing your API, most of the time you can get away without resorting to sub-resources. In the
example above the same result would be achieved by simply exposing an invoices endpoint that clients could query
this way:

invoices?where={"contact_id": 51f63e0838345b6dcd7eabff}

or

invoices?where={"contact_id": 51f63e0838345b6dcd7eabff, "number": 10}

It’s mostly a design choice, but keep in mind that when it comes to enabling individual document endpoints you might
incur performance hits. This otherwise legit GET request:

people/<contact_id>/invoices/<invoice_id>

would cause a two fields lookup on the database. This is not ideal and also not really needed, as <invoice_id> is a
unique field. By contrast, if you had a simple resource endpoint the document lookup would happen on a single field:

invoices/<invoice_id>

Endpoints that supports sub-resources will have a specific behavior on DELETE operations. A DELETE to the following
endpoint:

people/51f63e0838345b6dcd7eabff/invoices

would cause the deletion of all the documents that match follow query:

{'contact_id': '51f63e0838345b6dcd7eabff'}

Therefore, for sub-resource endpoints, only the documents satisfying the endpoint semantic will be deleted. This
differs from the standard behavior, whereas a delete operation on a collection enpoint will cause the deletion of all the
documents in the collection.

Another example. A DELETE to the following item endpoint:

people/51f63e0838345b6dcd7eabff/invoices/1

would cause the deletion all the documents matched by the follow query:

{'contact_id': '51f63e0838345b6dcd7eabff', "<invoice_id>": 1}

This behaviour enables support for typical tree structures, where the id of the resource alone is not necessarily a primary
key by itself.

2.5. Features 15

Eve Documentation, Release 2.1.0

2.5.4 Customizable, multiple item endpoints

Resources can or cannot expose individual item endpoints. API consumers could get access to people, people/
<ObjectId> and people/Doe, but only to /works. When you do grant access to item endpoints, you can define up to
two lookups, both defined with regexes. The first will be the primary endpoint and will match your database primary
key structure (i.e., an ObjectId in a MongoDB database).

$ curl -i http://myapi.com/people/521d6840c437dc0002d1203c
HTTP/1.1 200 OK
Etag: 28995829ee85d69c4c18d597a0f68ae606a266cc
Last-Modified: Wed, 21 Nov 2012 16:04:56 GMT
...

The second, which is optional and read-only, will match a field with unique values since Eve will retrieve only the first
match anyway.

$ curl -i http://myapi.com/people/Doe
HTTP/1.1 200 OK
Etag: 28995829ee85d69c4c18d597a0f68ae606a266cc
Last-Modified: Wed, 21 Nov 2012 16:04:56 GMT
...

Since we are accessing the same item, in both cases the response payload will look something like this:

{
"firstname": "John",
"lastname": "Doe",
"born": "Thu, 27 Aug 1970 14:37:13 GMT",
"role": ["author"],
"location": {"city": "Auburn", "address": "422 South Gay Street"},
"_id": "50acfba938345b0978fccad7"
"_updated": "Wed, 21 Nov 2012 16:04:56 GMT",
"_created": "Wed, 21 Nov 2012 16:04:56 GMT",
"_etag": "28995829ee85d69c4c18d597a0f68ae606a266cc",
"_links": {

"self": {"href": "people/50acfba938345b0978fccad7", "title": "person"},
"parent": {"href": "/", "title": "home"},
"collection": {"href": "people", "title": "people"}

}
}

As you can see, item endpoints provide their own HATEOAS directives.

Please Note

According to REST principles resource items should only have one unique identifier. Eve abides by providing one
default endpoint per item. Adding a secondary endpoint is a decision that should be pondered carefully.

Consider our example above. Even without the people/<lastname> endpoint, a client could always retrieve a person
by querying the resource endpoint by last name: people/?where={"lastname": "Doe"}. Actually the whole
example is fubar, as there could be multiple people sharing the same last name, but you get the idea.

16 Chapter 2. Funding Eve

http://en.wikipedia.org/wiki/HATEOAS

Eve Documentation, Release 2.1.0

2.5.5 Filtering

Resource endpoints allow consumers to retrieve multiple documents. Query strings are supported, allowing for filtering
and sorting. Both native Mongo queries and Python conditional expressions are supported.

Here we are asking for all documents where lastname value is Doe:

http://myapi.com/people?where={"lastname": "Doe"}

With curl you would go like this:

$ curl -i -g http://myapi.com/people?where={%22lastname%22:%20%22Doe%22}
HTTP/1.1 200 OK

Filtering on embedded document fields is possible:

http://myapi.com/people?where={"location.city": "San Francisco"}

Date fields are also easy to query on:

http://myapi.com/people?where={"born": {"$gte":"Wed, 25 Feb 1987 17:00:00 GMT"}}

Date values should conform to RFC1123. Should you need a different format, you can change the DATE_FORMAT
setting.

In general you will find that most MongoDB queries “just work”. Should you need it, MONGO_QUERY_BLACKLIST
allows you to blacklist unwanted operators.

Native Python syntax works like this:

$ curl -i http://myapi.com/people?where=lastname=="Doe"
HTTP/1.1 200 OK

Both syntaxes allow for conditional and logical And/Or operators, however nested and combined.

Filters are enabled by default on all document fields. However, the API maintainer can choose to disable them all and/or
whitelist allowed ones (see ALLOWED_FILTERS in Global Configuration). If scraping, or fear of DB DoS attacks by
querying on non-indexed fields is a concern, then whitelisting allowed filters is the way to go.

You also have the option to validate the incoming filters against the resource’s schema and refuse to apply the filtering
if any filters are invalid, by using the VALIDATE_FILTERING system setting (see Global Configuration)

2.5.6 Pretty Printing

You can pretty print the response by specifying a query parameter named pretty:

$ curl -i http://myapi.com/people?pretty
HTTP/1.1 200 OK

{
"_items": [

{
"_updated": "Tue, 19 Apr 2016 08:19:00 GMT",
"firstname": "John",
"lastname": "Doe",
"born": "Thu, 27 Aug 1970 14:37:13 GMT",

(continues on next page)

2.5. Features 17

https://docs.mongodb.com/v3.2/reference/operator/query/

Eve Documentation, Release 2.1.0

(continued from previous page)

"role": [
"author"

],
"location": {

"city": "Auburn",
"address": "422 South Gay Street"

},
"_links": {

"self": {
"href": "people/5715e9f438345b3510d27eb8",
"title": "person"

}
},
"_created": "Tue, 19 Apr 2016 08:19:00 GMT",
"_id": "5715e9f438345b3510d27eb8",
"_etag": "86dc6b45fe7e2f41f1ca53a0e8fda81224229799"

},
...

]
}

2.5.7 Sorting

Sorting is supported as well:

$ curl -i http://myapi.com/people?sort=city,-lastname
HTTP/1.1 200 OK

Would return documents sorted by city and then by lastname (descending). As you can see you simply prepend a minus
to the field name if you need the sort order to be reversed for a field.

The MongoDB data layer also supports native MongoDB syntax:

http://myapi.com/people?sort=[("lastname", -1)]

which translates to the following curl request:

$ curl -i http://myapi.com/people?sort=[(%22lastname%22,%20-1)]
HTTP/1.1 200 OK

Would return documents sorted by lastname in descending order.

Sorting is enabled by default and can be disabled both globally and/or at resource level (see SORTING in Global Con-
figuration and sorting in Domain Configuration). It is also possible to set the default sort at every API endpoints (see
default_sort in Domain Configuration).

Please note

Always use double quotes to wrap field names and values. Using single quotes will result in 400 Bad Request
responses.

18 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

2.5.8 Pagination

Resource pagination is enabled by default in order to improve performance and preserve bandwidth. When a consumer
requests a resource, the first N items matching the query are served, and links to subsequent/previous pages are provided
with the response. Default and maximum page size is customizable, and consumers can request specific pages via the
query string:

$ curl -i http://myapi.com/people?max_results=20&page=2
HTTP/1.1 200 OK

Of course you can mix all the available query parameters:

$ curl -i http://myapi.com/people?where={"lastname": "Doe"}&sort=[("firstname", 1)]&
→˓page=5
HTTP/1.1 200 OK

Pagination can be disabled. Please note that, for clarity, the above example is not properly escaped. If using curl, refer
to the examples provided in Filtering.

2.5.9 HATEOAS

Hypermedia as the Engine of Application State (HATEOAS) is enabled by default. Each GET response includes
a _links section. Links provide details on their relation relative to the resource being accessed, and a title.
Relations and titles can then be used by clients to dynamically updated their UI, or to navigate the API without knowing
its structure beforehand. An example:

{
"_links": {

"self": {
"href": "people",
"title": "people"

},
"parent": {

"href": "/",
"title": "home"

},
"next": {

"href": "people?page=2",
"title": "next page"

},
"last": {

"href": "people?page=10",
"title": "last page"

}
}

}

A GET request to the API home page (the API entry point) will be served with a list of links to accessible resources.
From there, any client could navigate the API just by following the links provided with every response.

HATEOAS links are always relative to the API entry point, so if your API home is at examples.com/api/v1, the
self link in the above example would mean that the people endpoint is located at examples.com/api/v1/people.

Please note that next, previous, last and related items will only be included when appropriate.

2.5. Features 19

http://en.wikipedia.org/wiki/HATEOAS

Eve Documentation, Release 2.1.0

Disabling HATEOAS

HATEOAS can be disabled both at the API and/or resource level. Why would you want to turn HATEOAS off? Well,
if you know that your client application is not going to use the feature, then you might want to save on both bandwidth
and performance.

2.5.10 Rendering

Eve responses are automatically rendered as JSON (the default) or XML, depending on the request Accept header.
Inbound documents (for inserts and edits) are in JSON format.

$ curl -H "Accept: application/xml" -i http://myapi.com
HTTP/1.1 200 OK
Content-Type: application/xml; charset=utf-8
...

<resource>
<link rel="child" href="people" title="people" />
<link rel="child" href="works" title="works" />

</resource>

Default renderers might be changed by editing RENDERERS value in the settings file.

RENDERERS = [
'eve.render.JSONRenderer',
'eve.render.XMLRenderer'

]

You can create your own renderer by subclassing eve.render.Renderer. Each renderer should set valid mime attr
and have .render() method implemented. Please note that at least one renderer must always be enabled.

2.5.11 Conditional Requests

Each resource representation provides information on the last time it was updated (Last-Modified), along with an
hash value computed on the representation itself (ETag). These headers allow clients to perform conditional requests
by using the If-Modified-Since header:

$ curl -H "If-Modified-Since: Wed, 05 Dec 2012 09:53:07 GMT" -i http://myapi.com/people/
→˓521d6840c437dc0002d1203c
HTTP/1.1 200 OK

or the If-None-Match header:

$ curl -H "If-None-Match: 1234567890123456789012345678901234567890" -i http://myapi.com/
→˓people/521d6840c437dc0002d1203c
HTTP/1.1 200 OK

20 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

2.5.12 Data Integrity and Concurrency Control

API responses include a ETag header which also allows for proper concurrency control. An ETag is a hash value
representing the current state of the resource on the server. Consumers are not allowed to edit (PATCH or PUT) or delete
(DELETE) a resource unless they provide an up-to-date ETag for the resource they are attempting to edit. This prevents
overwriting items with obsolete versions.

Consider the following workflow:

$ curl -H "Content-Type: application/json" -X PATCH -i http://myapi.com/people/
→˓521d6840c437dc0002d1203c -d '{"firstname": "ronald"}'
HTTP/1.1 428 PRECONDITION REQUIRED

We attempted an edit (PATCH), but we did not provide an ETag for the item so we got a 428 PRECONDITION REQUIRED
back. Let’s try again:

$ curl -H "If-Match: 1234567890123456789012345678901234567890" -H "Content-Type:␣
→˓application/json" -X PATCH -i http://myapi.com/people/521d6840c437dc0002d1203c -d '{
→˓"firstname": "ronald"}'
HTTP/1.1 412 PRECONDITION FAILED

What went wrong this time? We provided the mandatory If-Match header, but it’s value did not match the ETag
computed on the representation of the item currently stored on the server, so we got a 412 PRECONDITION FAILED.
Again!

$ curl -H "If-Match: 80b81f314712932a4d4ea75ab0b76a4eea613012" -H "Content-Type:␣
→˓application/json" -X PATCH -i http://myapi.com/people/50adfa4038345b1049c88a37 -d '{
→˓"firstname": "ronald"}'
HTTP/1.1 200 OK

Finally! And the response payload looks something like this:

{
"_status": "OK",
"_updated": "Fri, 23 Nov 2012 08:11:19 GMT",
"_id": "50adfa4038345b1049c88a37",
"_etag": "372fbbebf54dfe61742556f17a8461ca9a6f5a11"
"_links": {"self": "..."}

}

This time we got our patch in, and the server returned the new ETag. We also get the new _updated value, which
eventually will allow us to perform subsequent conditional requests.

Concurrency control applies to all edition methods: PATCH (edit), PUT (replace), DELETE (delete).

Disabling concurrency control

If your use case requires, you can opt to completely disable concurrency control. ETag match checks can be disabled
by setting the IF_MATCH configuration variable to False (see Global Configuration). When concurrency control is
disabled no ETag is provided with responses. You should be careful about disabling this feature, as you would effectively
open your API to the risk of older versions replacing your documents. Alternatively, ETag match checks can be made
optional by the client if ENFORCE_IF_MATCH is disabled. When concurrency check enforcement is disabled, requests
with the If-Match header will be processed as conditional requests, and requests made without the If-Match header
will not be processed as conditional.

2.5. Features 21

Eve Documentation, Release 2.1.0

2.5.13 Bulk Inserts

A client may submit a single document for insertion:

$ curl -d '{"firstname": "barack", "lastname": "obama"}' -H 'Content-Type: application/
→˓json' http://myapi.com/people
HTTP/1.1 201 OK

In this case the response payload will just contain the relevant document metadata:

{
"_status": "OK",
"_updated": "Thu, 22 Nov 2012 15:22:27 GMT",
"_id": "50ae43339fa12500024def5b",
"_etag": "749093d334ebd05cf7f2b7dbfb7868605578db2c"
"_links": {"self": {"href": "people/50ae43339fa12500024def5b", "title": "person"}}

}

When a 201 Created is returned following a POST request, the Location header is also included with the response.
Its value is the URI to the new document.

In order to reduce the number of loopbacks, a client might also submit multiple documents with a single request. All
it needs to do is enclose the documents in a JSON list:

$ curl -d '[{"firstname": "barack", "lastname": "obama"}, {"firstname": "mitt", "lastname
→˓": "romney"}]' -H 'Content-Type: application/json' http://myapi.com/people
HTTP/1.1 201 OK

The response will be a list itself, with the state of each document:

{
"_status": "OK",
"_items": [

{
"_status": "OK",
"_updated": "Thu, 22 Nov 2012 15:22:27 GMT",
"_id": "50ae43339fa12500024def5b",
"_etag": "749093d334ebd05cf7f2b7dbfb7868605578db2c"
"_links": {"self": {"href": "people/50ae43339fa12500024def5b", "title":

→˓"person"}}
},
{

"_status": "OK",
"_updated": "Thu, 22 Nov 2012 15:22:27 GMT",
"_id": "50ae43339fa12500024def5c",
"_etag": "62d356f623c7d9dc864ffa5facc47dced4ba6907"
"_links": {"self": {"href": "people/50ae43339fa12500024def5c", "title":

→˓"person"}}
}

]
}

When multiple documents are submitted the API takes advantage of MongoDB bulk insert capabilities which means
that not only there’s just one request traveling from the client to the remote API, but also that a single loopback is
performed between the API server and the database.

22 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

In case of successful multiple inserts, keep in mind that the Location header only returns the URI of the first created
document.

2.5.14 Data Validation

Data validation is provided out-of-the-box. Your configuration includes a schema definition for every resource managed
by the API. Data sent to the API to be inserted/updated will be validated against the schema, and a resource will only
be updated if validation passes.

$ curl -d '[{"firstname": "bill", "lastname": "clinton"}, {"firstname": "mitt", "lastname
→˓": "romney"}]' -H 'Content-Type: application/json' http://myapi.com/people
HTTP/1.1 201 OK

The response will contain a success/error state for each item provided in the request:

{
"_status": "ERR",
"_error": "Some documents contains errors",
"_items": [

{
"_status": "ERR",
"_issues": {"lastname": "value 'clinton' not unique"}

},
{

"_status": "OK",
}

]
]

In the example above, the first document did not validate so the whole request has been rejected.

When all documents pass validation and are inserted correctly the response status is 201 Created. If any doc-
ument fails validation the response status is 422 Unprocessable Entity, or any other error code defined by
VALIDATION_ERROR_STATUS configuration.

For more information see Data Validation.

2.5.15 Extensible Data Validation

Data validation is based on the Cerberus validation system and therefore it is extensible, so you can adapt it to your
specific use case. Say that your API can only accept odd numbers for a certain field value; you can extend the validation
class to validate that. Or say you want to make sure that a VAT field actually matches your own country VAT algorithm;
you can do that too. As a matter of fact, Eve’s MongoDB data-layer itself extends Cerberus validation by implementing
the unique schema field constraint. For more information see Data Validation.

2.5. Features 23

https://github.com/pyeve/cerberus

Eve Documentation, Release 2.1.0

2.5.16 Editing a Document (PATCH)

Clients can edit a document with the PATCH method, while PUT will replace it. PATCH cannot remove a field, but only
update its value.

Consider the following schema:

'entity': {
'name': {

'type': 'string',
'required': True

},
'contact': {

'type': 'dict',
'required': True,
'schema': {

'phone': {
'type': 'string',
'required': False,
'default': '1234567890'

},
'email': {

'type': 'string',
'required': False,
'default': 'abc@efg.com'

},
}

}
}

Two notations: {contact: {email: 'an email'}} and {contact.email: 'an email'} can be used to up-
date the email field in the contact subdocument.

Keep in mind that PATCH cannot remove a field, but only update existing values. Also, by default PATCH will normalize
missing body fields that have default values defined in the schema. Consider the schema above. If your PATCH has a
body like this:

{'contact.email': 'xyz@gmail.com'}

and targets this document:

{
'name': 'test account',
'contact': {'email': '123@yahoo.com', 'phone': '9876543210'}

}

Then the updated document will look like this:

{
'name': 'test account',
'contact': {
'email': 'xyz@gmail.com',
'phone': '1234567890'

}
}

24 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

That is, contact.phone has been reset to its default value. This might not been the desired behavior. To change it,
you can set normalize_on_patch (or NORMALIZE_ON_PATCH globally) to False. Now the updated document will
look like this:

{
'name': 'test account',
'contact': {
'email': '123@yahoo.com',
'phone': '9876543210'

}
}

2.5.17 Resource-level Cache Control

You can set global and individual cache-control directives for each resource.

$ curl -i http://myapi
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 131
Cache-Control: max-age=20
Expires: Tue, 22 Jan 2013 09:34:34 GMT
Server: Eve/0.0.3 Werkzeug/0.8.3 Python/2.7.3
Date: Tue, 22 Jan 2013 09:34:14 GMT

The response above includes both Cache-Control and Expires headers. These will minimize load on the server
since cache-enabled consumers will perform resource-intensive request only when really needed.

2.5.18 API Versioning

I’m not too fond of API versioning. I believe that clients should be intelligent enough to deal with API updates trans-
parently, especially since Eve-powered API support HATEOAS. When versioning is a necessity, different API versions
should be isolated instances since so many things could be different between versions: caching, URIs, schemas, vali-
dation, and so on. URI versioning (http://api.example.com/v1/. . .) is supported.

2.5.19 Document Versioning

Eve supports automatic version control of documents. By default, this setting is turned off, but it can be turned globally
or configured individually for each resource. When enabled, Eve begins automatically tracking changes to documents
and adds the fields _version and _latest_version when retrieving documents.

Behind the scenes, Eve stores document versions in shadow collections that parallels the collection of each primary
resource that Eve defines. New document versions are automatically added to this collection during normal POST,
PUT, and PATCH operations. A special new query parameter is available when GETing an item that provides access to
the document versions. Access a specific version with ?version=VERSION, access all versions with ?version=all,
and access diffs of all versions with ?version=diffs. Collection query features like projections, pagination, and
sorting work with all and diff except for sorting which does not work on diff.

It is important to note that there are a few non-standard scenarios which could produce unexpected results when ver-
sioning is turned on. In particular, document history will not be saved when modifying collections outside of the Eve
generated API. Also, if at anytime the VERSION field gets removed from the primary document (which cannot hap-
pen through the API when versioning is turned on), a subsequent write will re-initialize the VERSION number with

2.5. Features 25

http://en.wikipedia.org/wiki/HATEOAS
http://api.example.com/v1/

Eve Documentation, Release 2.1.0

VERSION = 1. At this time there will be multiple versions of the document with the same version number. In normal
practice, VERSIONING can be enable without worry for any new collection or even an existing collection which has not
previously had versioning enabled.

Additionally, there are caching corner cases unique to document versions. A specific document version includes the
_latest_version field, the value of which will change when a new document version is created. To account for this,
Eve determines the time _latest_version changed (the timestamp of the last update to the primary document) and
uses that value to populate the Last-Modified header and check the If-Modified-Since conditional cache validator
of specific document version queries. Note that this will be different from the timestamp in the version’s last updated
field. The etag for a document version does not change when _latest_version changes, however. This results in
two corner cases. First, because Eve cannot determine if the client’s _latest_version is up to date from an ETag
alone, a query using only If-None-Match for cache validation of old document versions will always have its cache
invalidated. Second, a version fetched and cached in the same second that multiple new versions are created can receive
incorrect Not Modified responses on ensuing GET queries due to Last-Modified values having a resolution of one
second and the static etag values not providing indication of the changes. These are both highly unlikely scenarios, but
an application expecting multiple edits per second should account for the possibility of holing stale _latest_version
data.

For more information see and Global Configuration and Domain Configuration.

2.5.20 Authentication

Customizable Basic Authentication (RFC-2617), Token-based authentication and HMAC-based Authentication are
supported. OAuth2 can be easily integrated. You can lockdown the whole API, or just some endpoints. You can also
restrict CRUD commands, like allowing open read-only access while restricting edits, inserts and deletes to authorized
users. Role-based access control is supported as well. For more information see Authentication and Authorization.

2.5.21 CORS Cross-Origin Resource Sharing

Eve-powered APIs can be accessed by the JavaScript contained in web pages. Disabled by default, CORS allows web
pages to work with REST APIs, something that is usually restricted by most browsers ‘same domain’ security policy.
The X_DOMAINS setting allows to specify which domains are allowed to perform CORS requests. A list of regular
expressions may be defined in X_DOMAINS_RE, which is useful for websites with dynamic ranges of subdomains. Make
sure to anchor and escape the regexes properly, for example X_DOMAINS_RE = ['^http://sub-\d{3}\.example\
.com$'].

2.5.22 JSONP Support

In general you don’t really want to add JSONP when you can enable CORS instead:

There have been some criticisms raised about JSONP. Cross-origin resource sharing (CORS) is a more
recent method of getting data from a server in a different domain, which addresses some of those criticisms.
All modern browsers now support CORS making it a viable cross-browser alternative (source.)

There are circumstances however when you do need JSONP, like when you have to support legacy software (IE6
anyone?)

To enable JSONP in Eve you just set JSONP_ARGUMENT. Then, any valid request with JSONP_ARGUMENT will get back
a response wrapped with said argument value. For example if you set JSON_ARGUMENT = 'callback':

$ curl -i http://localhost:5000/?callback=hello
hello(<JSON here>)

Requests with no callback argument will be served with no JSONP.

26 Chapter 2. Funding Eve

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://en.wikipedia.org/wiki/JSONP

Eve Documentation, Release 2.1.0

2.5.23 Read-only by default

If all you need is a read-only API, then you can have it up and running in a matter of minutes.

2.5.24 Default and Nullable Values

Fields can have default values and nullable types. When serving POST (create) requests, missing fields will be assigned
the configured default values. See default and nullable keywords in Schema Definition for more information.

2.5.25 Predefined Database Filters

Resource endpoints will only expose (and update) documents that match a predefined filter. This allows for multiple
resource endpoints to seamlessly target the same database collection. A typical use-case would be a hypothetical
people collection on the database being used by both the /admins and /users API endpoints.

See also

• Advanced Datasource Patterns

• Predefined Database Filters

2.5.26 Projections

This feature allows you to create dynamic views of collections and documents, or more precisely, to decide what fields
should or should not be returned, using a ‘projection’. Put another way, Projections are conditional queries where the
client dictates which fields should be returned by the API.

$ curl -i -G http://myapi.com/people --data-urlencode 'projection={"lastname": 1, "born
→˓": 1}'
HTTP/1.1 200 OK

The query above will only return lastname and born out of all the fields available in the ‘people’ resource. You can
also exclude fields:

$ curl -i -G http://myapi.com/people --data-urlencode 'projection={"born": 0}'
HTTP/1.1 200 OK

The above will return all fields but born. Please note that key fields such as ID_FIELD, DATE_CREATED,
DATE_UPDATED etc. will still be included with the payload. Also keep in mind that some database engines, Mongo
included, do not allow for mixing of inclusive and exclusive selections.

See also

• Limiting the Fieldset Exposed by the API Endpoint

• Leveraging Projections to optimize the handling of media files

2.5. Features 27

Eve Documentation, Release 2.1.0

2.5.27 Embedded Resource Serialization

If a document field is referencing a document in another resource, clients can request the referenced document to be
embedded within the requested document.

Clients have the power to activate document embedding on per-request basis by means of a query parameter. Suppose
you have a emails resource configured like this:

DOMAIN = {
'emails': {

'schema': {
'author': {

'type': 'objectid',
'data_relation': {

'resource': 'users',
'field': '_id',
'embeddable': True

},
},
'subject': {'type': 'string'},
'body': {'type': 'string'},

}
}

A GET like this: /emails?embedded={"author":1} would return a fully embedded users document, whereas the
same request without the embedded argument would just return the user ObjectId. Embedded resource serialization
is available at both resource and item (/emails/<id>/?embedded={"author":1}) endpoints.

Embedding can be enabled or disabled both at global level (by setting EMBEDDING to either True or False) and at
resource level (by toggling the embedding value). Furthermore, only fields with the embeddable value explicitly set
to True will allow the embedding of referenced documents.

Embedding also works with a data_relation to a specific version of a document, but the schema looks a little bit different.
To enable the data_relation to a specific version, add 'version': True to the data_relation block. You’ll also want
to change the type to dict and add the schema definition shown below.

DOMAIN = {
'emails': {

'schema': {
'author': {

'type': 'dict',
'schema': {

'_id': {'type': 'objectid'},
'_version': {'type': 'integer'}

},
'data_relation': {

'resource': 'users',
'field': '_id',
'embeddable': True,
'version': True,

},
},
'subject': {'type': 'string'},
'body': {'type': 'string'},

}
(continues on next page)

28 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

(continued from previous page)

}

As you can see, 'version': True changes the expected value of a data_relation field to a dictionary with fields
names data_relation['field'] and VERSION. With 'field': '_id' in the data_relation definition above and
VERSION = '_version' in the Eve config, the value of the data_relation in this scenario would be a dictionary with
fields _id and _version.

Predefined Resource Serialization

It is also possible to elect some fields for predefined resource serialization. If the listed fields are embeddable and they
are actually referencing documents in other resources (and embedding is enabled for the resource), then the referenced
documents will be embedded by default. Clients can still opt out from field that are embedded by default:

$ curl -i http://example.com/people/?embedded={"author": 0}
HTTP/1.1 200 OK

Limitations

Currently we support embedding of documents by references located in any subdocuments (nested dicts and lists).
For example, a query /invoices/?embedded={"user.friends":1} will return a document with user and all his
friends embedded, but only if user is a subdocument and friends is a list of reference (it could be a list of dicts,
nested dict, etc.). This feature is about serialization on GET requests. There’s no support for POST, PUT or PATCH
of embedded documents.

Document embedding is enabled by default.

Please note

When it comes to MongoDB, what embedded resource serialization deals with is document references (linked docu-
ments), something different from embedded documents, also supported by Eve (see MongoDB Data Model Design).
Embedded resource serialization is a nice feature that can really help with normalizing your data model for the client.
However, when deciding whether to enable it or not, especially by default, keep in mind that each embedded resource
being looked up will require a database lookup, which can easily lead to performance issues.

2.5.28 Soft Delete

Eve provides an optional “soft delete” mode in which deleted documents continue to be stored in the database and are
able to be restored, but still act as removed items in response to API requests. Soft delete is disabled by default, but
can be enabled globally using the SOFT_DELETE configuration setting, or individually configured at the resource level
using the domain configuration soft_delete setting. See Global Configuration and Domain Configuration for more
information on enabling and configuring soft delete.

When soft deletion is enabled, callbacks attached to on_delete_resource_originals and
on_delete_resource_originals_<resource_name> events will receive both deleted and not deleted docu-
ments via the originals argument (see Event Hooks).

2.5. Features 29

http://docs.mongodb.org/manual/core/data-model-design

Eve Documentation, Release 2.1.0

Behavior

With soft delete enabled, DELETE requests to individual items and resources respond just as they do for a traditional
“hard” delete. Behind the scenes, however, Eve does not remove deleted items from the database, but instead patches
the document with a _deleted meta field set to true. (The name of the _deleted field is configurable. See Global
Configuration.) All requests made when soft delete is enabled filter against or otherwise account for the _deleted
field.

The _deleted field is automatically added and initialized to false for all documents created while soft delete is
enabled. Documents created prior to soft delete being enabled and which therefore do not define the _deleted field in
the database will still include _deleted: false in API response data, added by Eve during response construction.
PUTs or PATCHes to these documents will add the _deleted field to the stored documents, set to false.

Responses to GET requests for soft deleted documents vary slightly from responses to missing or “hard” deleted docu-
ments. GET requests for soft deleted documents will still respond with 404 Not Found status codes, but the response
body will contain the soft deleted document with _deleted: true. Documents embedded in the deleted document
will not be expanded in the response, regardless of any default settings or the contents of the request’s embedded query
param. This is to ensure that soft deleted documents included in 404 responses reflect the state of a document when it
was deleted, and do not to change if embedded documents are updated.

By default, resource level GET requests will not include soft deleted items in their response. This behavior matches
that of requests after a “hard” delete. If including deleted items in the response is desired, the show_deleted query
param can be added to the request. (the show_deleted param name is configurable. See Global Configuration) Eve
will respond with all documents, deleted or not, and it is up to the client to parse returned documents’ _deleted field.
The _deleted field can also be explicitly filtered against in a request, allowing only deleted documents to be returned
using a ?where={"_deleted": true} query.

Soft delete is enforced in the data layer, meaning queries made by application code using the app.data.find_one
and app.data.find methods will automatically filter out soft deleted items. Passing a request object with req.
show_deleted == True or a lookup dictionary that explicitly filters on the _deleted field will override the default
filtering.

Restoring Soft Deleted Items

PUT or PATCH requests made to a soft deleted document will restore it, automatically setting _deleted to false
in the database. Modifying the _deleted field directly is not necessary (or allowed). For example, using PATCH
requests, only the fields to be changed in the restored version would be specified, or an empty request would be made to
restore the document as is. The request must be made with proper authorization for write permission to the soft deleted
document or it will be refused.

Be aware that, should a previously soft deleted document be restored, there is a chance that an eventual unique field
might end up being now duplicated in two different documents: the restored one, and another which might have been
stored with the same field value while the original (now restored) was in ‘deleted’ state. This is because soft deleted
documents are ignored when validating the unique rule for new or updated documents.

Versioning

Soft deleting a versioned document creates a new version of that document with _deleted set to true. A GET
request to the deleted version will receive a 404 Not Found response as described above, while previous versions will
continue to respond with 200 OK. Responses to ?version=diff or ?version=all will include the deleted version
as if it were any other.

30 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

Data Relations

The Eve data_relation validator will not allow references to documents that have been soft deleted. Attempting
to create or update a document with a reference to a soft deleted document will fail just as if that document had been
hard deleted. Existing data relations to documents that are soft deleted remain in the database, but requests requiring
embedded document serialization of those relations will resolve to a null value. Again, this matches the behavior of
relations to hard deleted documents.

Versioned data relations to a deleted document version will also fail to validate, but relations to versions prior to deletion
or after restoration of the document are allowed and will continue to resolve successfully.

Considerations

Disabling soft delete after use in an application requires database maintenance to ensure your API remains consistent.
With soft delete disabled, requests will no longer filter against or handle the _deleted field, and documents that were
soft deleted will now be live again on your API. It is therefore necessary when disabling soft delete to perform a data
migration to remove all documents with _deleted == True, and recommended to remove the _deleted field from
documents where _deleted == False. Enabling soft delete in an existing application is safe, and will maintain
documents deleted from that point on.

2.5.29 Event Hooks

Pre-Request Event Hooks

When a GET/HEAD, POST, PATCH, PUT, DELETE request is received, both a on_pre_<method> and a
on_pre_<method>_<resource> event is raised. You can subscribe to these events with multiple callback functions.

>>> def pre_get_callback(resource, request, lookup):
... print('A GET request on the "%s" endpoint has just been received!' % resource)

>>> def pre_contacts_get_callback(request, lookup):
... print('A GET request on the contacts endpoint has just been received!')

>>> app = Eve()

>>> app.on_pre_GET += pre_get_callback
>>> app.on_pre_GET_contacts += pre_contacts_get_callback

>>> app.run()

Callbacks will receive the resource being requested, the original flask.request object and the current lookup dic-
tionary as arguments (only exception being the on_pre_POST hook which does not provide a lookup argument).

2.5. Features 31

Eve Documentation, Release 2.1.0

Dynamic Lookup Filters

Since the lookup dictionary will be used by the data layer to retrieve resource documents, developers may choose to
alter it in order to add custom logic to the lookup query.

def pre_GET(resource, request, lookup):
only return documents that have a 'username' field.
lookup["username"] = {'$exists': True}

app = Eve()

app.on_pre_GET += pre_GET
app.run()

Altering the lookup dictionary at runtime would have similar effects to applying Predefined Database Filters via con-
figuration. However, you can only set static filters via configuration whereas by hooking to the on_pre_<METHOD>
events you are allowed to set dynamic filters instead, which allows for additional flexibility.

Post-Request Event Hooks

When a GET, POST, PATCH, PUT, DELETE method has been executed, both a on_post_<method> and
on_post_<method>_<resource> event is raised. You can subscribe to these events with multiple callback func-
tions. Callbacks will receive the resource accessed, original flask.request object and the response payload.

>>> def post_get_callback(resource, request, payload):
... print('A GET on the "%s" endpoint was just performed!' % resource)

>>> def post_contacts_get_callback(request, payload):
... print('A get on "contacts" was just performed!')

>>> app = Eve()

>>> app.on_post_GET += post_get_callback
>>> app.on_post_GET_contacts += post_contacts_get_callback

>>> app.run()

Database event hooks

Database event hooks work like request event hooks. These events are fired before and after a database action. Here is
an example of how events are configured:

>>> def add_signature(resource, response):
... response['SIGNATURE'] = "A %s from eve" % resource

>>> app = Eve()
>>> app.on_fetched_item += add_signature

You may use flask’s abort() to interrupt the database operation:

>>> from flask import abort

(continues on next page)

32 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

(continued from previous page)

>>> def check_update_access(resource, updates, original):
... abort(403)

>>> app = Eve()
>>> app.on_insert_item += check_update_access

The events are fired for resources and items if the action is available for both. And for each action two events will be
fired:

• Generic: on_<action_name>

• With the name of the resource: on_<action_name>_<resource_name>

Let’s see an overview of what events are available:

2.5. Features 33

Eve Documentation, Release 2.1.0

Action What When Event name / method
signature

Fetch Resource After

on_fetched_resource

def
event(resource_name,

response)

on_fetched_resource_<resource_name>

def event(response)

Item After

on_fetched_item

def
event(resource_name,

response)

on_fetched_item_<resource_name>

def event(response)

Diffs After

on_fetched_diffs

def
event(resource_name,

response)

on_fetched_diffs_<resource_name>

def event(response)

Insert Items Before
on_insert

def
event(resource_name,

items)

on_insert_<resource_name>

def event(items)

After
on_inserted

def
event(resource_name,

items)

on_inserted_<resource_name>

def event(items)

Replace Item Before

on_replace

def
event(resource_name,
item,
original)

on_replace_<resource_name>

def event(item,
original)

After

on_replaced

def
event(resource_name,
item,
original)

on_replaced_<resource_name>

def event(item,
original)

Update Item Before
on_update

def
event(resource_name,
updates,
original)

on_update_<resource_name>

def event(updates,
original)

After
on_updated

def
event(resource_name,
updates,
original)

on_updated_<resource_name>

def event(updates,
original)

Delete Item Before

on_delete_item

def
event(resource_name,

item)

on_delete_item_<resource_name>

def event(item)

After

on_deleted_item

def
event(resource_name,

item)

on_deleted_item_<resource_name>

def event(item)

Resource Before

on_delete_resource

def
event(resource_name)

on_delete_resource_<resource_name>

def event()

on_delete_resource_originals

def
event(resource_name,
originals,
lookup)

on_delete_resource_originals_<resource_name>

def
event(originals,
lookup)

After

on_deleted_resource

def
event(resource_name,

item)

on_deleted_resource_<resource_name>

def event(item)

34 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

Fetch Events

These are the fetch events with their method signature:

• on_fetched_resource(resource_name, response)

• on_fetched_resource_<resource_name>(response)

• on_fetched_item(resource_name, response)

• on_fetched_item_<resource_name>(response)

• on_fetched_diffs(resource_name, response)

• on_fetched_diffs_<resource_name>(response)

They are raised when items have just been read from the database and are about to be sent to the client. Registered
callback functions can manipulate the items as needed before they are returned to the client.

>>> def before_returning_items(resource_name, response):
... print('About to return items from "%s" ' % resource_name)

>>> def before_returning_contacts(response):
... print('About to return contacts')

>>> def before_returning_item(resource_name, response):
... print('About to return an item from "%s" ' % resource_name)

>>> def before_returning_contact(response):
... print('About to return a contact')

>>> app = Eve()
>>> app.on_fetched_resource += before_returning_items
>>> app.on_fetched_resource_contacts += before_returning_contacts
>>> app.on_fetched_item += before_returning_item
>>> app.on_fetched_item_contacts += before_returning_contact

It is important to note that item fetch events will work with Document Versioning for specific document versions like
?version=5 and all document versions with ?version=all. Accessing diffs of all versions with ?version=diffs
will only work with the diffs fetch events. Note that diffs returns partial documents which should be handled in the
callback.

Insert Events

These are the insert events with their method signature:

• on_insert(resource_name, items)

• on_insert_<resource_name>(items)

• on_inserted(resource_name, items)

• on_inserted_<resource_name>(items)

When a POST requests hits the API and new items are about to be stored in the database, these events are fired:

• on_insert for every resource endpoint.

• on_insert_<resource_name> for the specific <resource_name> resource endpoint.

2.5. Features 35

Eve Documentation, Release 2.1.0

Callback functions could hook into these events to arbitrarily add new fields or edit existing ones.

After the items have been inserted, these two events are fired:

• on_inserted for every resource endpoint.

• on_inserted_<resource_name> for the specific <resource_name> resource endpoint.

Validation errors

Items passed to these events as arguments come in a list. And only those items that passed validation are sent.

Example:

>>> def before_insert(resource_name, items):
... print('About to store items to "%s" ' % resource_name)

>>> def after_insert_contacts(items):
... print('About to store contacts')

>>> app = Eve()
>>> app.on_insert += before_insert
>>> app.on_inserted_contacts += after_insert_contacts

Replace Events

These are the replace events with their method signature:

• on_replace(resource_name, item, original)

• on_replace_<resource_name>(item, original)

• on_replaced(resource_name, item, original)

• on_replaced_<resource_name>(item, original)

When a PUT request hits the API and an item is about to be replaced after passing validation, these events are fired:

• on_replace for any resource item endpoint.

• on_replace_<resource_name> for the specific resource endpoint.

item is the new item which is about to be stored. original is the item in the database that is being replaced. Callback
functions could hook into these events to arbitrarily add or update item fields, or to perform other accessory action.

After the item has been replaced, these other two events are fired:

• on_replaced for any resource item endpoint.

• on_replaced_<resource_name> for the specific resource endpoint.

36 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

Update Events

These are the update events with their method signature:

• on_update(resource_name, updates, original)

• on_update_<resource_name>(updates, original)

• on_updated(resource_name, updates, original)

• on_updated_<resource_name>(updates, original)

When a PATCH request hits the API and an item is about to be updated after passing validation, these events are fired
before the item is updated:

• on_update for any resource endpoint.

• on_update_<resource_name> is fired only when the <resource_name> endpoint is hit.

Here updates stands for updates being applied to the item and original is the item in the database that is about to be
updated. Callback functions could hook into these events to arbitrarily add or update fields in updates, or to perform
other accessory action.

After the item has been updated:

• on_updated is fired for any resource endpoint.

• on_updated_<resource_name> is fired only when the <resource_name> endpoint is hit.

Please note

Please be aware that last_modified and etag headers will always be consistent with the state of the items on the
database (they won’t be updated to reflect changes eventually applied by the callback functions).

Delete Events

These are the delete events with their method signature:

• on_delete_item(resource_name, item)

• on_delete_item_<resource_name>(item)

• on_deleted_item(resource_name, item)

• on_deleted_item_<resource_name>(item)

• on_delete_resource(resource_name)

• on_delete_resource_<resource_name>()

• on_delete_resource_originals(originals, lookup)

• on_delete_resource_originals_<resource_name>(originals, lookup)

• on_deleted_resource(resource_name)

• on_deleted_resource_<resource_name>()

2.5. Features 37

Eve Documentation, Release 2.1.0

Items

When a DELETE request hits an item endpoint and before the item is deleted, these events are fired:

• on_delete_item for any resource hit by the request.

• on_delete_item_<resource_name> for the specific <resource_name> item endpoint hit by the DELETE.

After the item has been deleted the on_deleted_item(resource_name, item) and
on_deleted_item_<resource_name>(item) are raised.

item is the item being deleted. Callback functions could hook into these events to perform accessory actions. And no
you can’t arbitrarily abort the delete operation at this point (you should probably look at Data Validation, or eventually
disable the delete command altogether).

Resources

If you were brave enough to enable the DELETE command on resource endpoints (allowing for wipeout of the entire
collection in one go), then you can be notified of such a disastrous occurrence by hooking a callback function to the
on_delete_resource(resource_name) or on_delete_resource_<resource_name>() hooks.

• on_delete_resource_originals for any resource hit by the request after having retrieved the originals doc-
uments.

• on_delete_resource_originals_<resource_name> for the specific <resource_name> resource endpoint
hit by the DELETE after having retrieved the original document.

NOTE: those two event are useful in order to perform some business logic before the actual remove operation given
the look up and the list of originals

Aggregation event hooks

You can also attach one or more callbacks to your aggregation endpoints. The before_aggregation event is fired
when an aggregation is about to be performed. Any attached callback function will receive both the endpoint name and
the aggregation pipeline as arguments. The pipeline can then be altered if needed.

>>> def on_aggregate(endpoint, pipeline):
... pipeline.append({"$unwind": "$tags"})

>>> app = Eve()
>>> app.before_aggregation += on_aggregate

The after_aggregation event is fired when the aggregation has been performed. An attached callback function
could leverage this event to modify the documents before they are returned to the client.

>>> def alter_documents(endpoint, documents):
... for document in documents:
... document['hello'] = 'well, hello!'

>>> app = Eve()
>>> app.after_aggregation += alter_documents

For more information on aggregation support, see MongoDB Aggregation Framework

Please note

38 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

To provide seamless event handling features Eve relies on the Events package.

2.5.30 Rate Limiting

API rate limiting is supported on a per-user/method basis. You can set the number of requests and the time window
for each HTTP method. If the requests limit is hit within the time window, the API will respond with 429 Request
limit exceeded until the timer resets. Users are identified by the Authentication header or (when missing) by the
client IP. When rate limiting is enabled, appropriate X-RateLimit- headers are provided with every API response.
Suppose that the rate limit has been set to 300 requests every 15 minutes, this is what a user would get after hitting a
endpoint with a single request:

X-RateLimit-Remaining: 299
X-RateLimit-Limit: 300
X-RateLimit-Reset: 1370940300

You can set different limits for each one of the supported methods (GET, POST, PATCH, DELETE).

Please Note

Rate Limiting is disabled by default, and needs a Redis server running when enabled. A tutorial on Rate Limiting is
forthcoming.

2.5.31 Custom ID Fields

Eve allows to extend its standard data type support. In the Handling custom ID fields tutorial we see how it is possible
to use UUID values instead of MongoDB default ObjectIds as unique document identifiers.

2.5.32 File Storage

Media files (images, pdf, etc.) can be uploaded as media document fields. Upload is done via POST, PUT and PATCH
as usual, but using the multipart/form-data content-type.

Let us assume that the accounts endpoint has a schema like this:

accounts = {
'name': {'type': 'string'},
'pic': {'type': 'media'},
...

}

With curl we would POST like this:

$ curl -F "name=john" -F "pic=@profile.jpg" http://example.com/accounts

For optimized performance files are stored in GridFS by default. Custom MediaStorage classes can be implemented
and passed to the application to support alternative storage systems. A FileSystemMediaStorage class is in the
works, and will soon be included with the Eve package.

As a proper developer guide is not available yet, you can peek at the MediaStorage source if you are interested in
developing custom storage classes.

2.5. Features 39

https://github.com/pyeve/events
http://docs.mongodb.org/manual/core/gridfs/
https://github.com/pyeve/eve/blob/develop/eve/io/media.py

Eve Documentation, Release 2.1.0

Serving media files as Base64 strings

When a document is requested media files will be returned as Base64 strings,

{
'_items': [

{
'_updated':'Sat, 05 Apr 2014 15:52:53 GMT',
'pic':'iVBORw0KGgoAAAANSUhEUgAAA4AAAAOACA...',

}
]
...

}

However, if the EXTENDED_MEDIA_INFO list is populated (it isn’t by default) the payload format will be different. This
flag allows passthrough from the driver of additional meta fields. For example, using the MongoDB driver, fields like
content_type, name and length can be added to this list and will be passed-through from the underlying driver.

When EXTENDED_MEDIA_INFO is used the field will be a dictionary whereas the file itself is stored under the file key
and other keys are the meta fields. Suppose that the flag is set like this:

EXTENDED_MEDIA_INFO = ['content_type', 'name', 'length']

Then the output will be something like

{
'_items': [

{
'_updated':'Sat, 05 Apr 2014 15:52:53 GMT',
'pic': {

'file': 'iVBORw0KGgoAAAANSUhEUgAAA4AAAAOACA...',
'content_type': 'text/plain',
'name': 'test.txt',
'length': 8129

}
}

]
...

}

For MongoDB, further fields can be found in the driver documentation.

If you have other means to retrieve the media files (custom Flask endpoint for example) then the media files can be
excluded from the payload by setting to False the RETURN_MEDIA_AS_BASE64_STRING flag. This takes into account
if EXTENDED_MEDIA_INFO is used.

40 Chapter 2. Funding Eve

http://api.mongodb.org/python/2.7rc0/api/gridfs/grid_file.html#gridfs.grid_file.GridOut

Eve Documentation, Release 2.1.0

Serving media files at a dedicated endpoint

While returning files embedded as Base64 fields is the default behaviour, you can opt for serving them at a dedicated
media endpoint. You achieve that by setting RETURN_MEDIA_AS_URL to True. When this feature is enabled document
fields contain urls to the correspondent files, which are served at the media endpoint.

You can change the default media endpoint (media) by updating the MEDIA_BASE_URL and MEDIA_ENDPOINT setting.
Suppose you are storing your images on Amazon S3 via a custom MediaStorage subclass. You would probably set
your media endpoint like so:

disable default behaviour
RETURN_MEDIA_AS_BASE64_STRING = False

return media as URL instead
RETURN_MEDIA_AS_URL = True

set up the desired media endpoint
MEDIA_BASE_URL = 'https://s3-us-west-2.amazonaws.com'
MEDIA_ENDPOINT = 'media'

Setting MEDIA_BASE_URL is optional. If no value is set, then the API base address will be used when building the URL
for MEDIA_ENDPOINT.

Partial media downloads

When files are served at a dedicated endpoint, clients can request partial downloads. This allows them to provide
features such as optimized pause/resume (with no need to restart the download). To perform a partial download, make
sure the Range header is added the the client request.

$ curl http://localhost/media/yourfile -i -H "Range: bytes=0-10"
HTTP/1.1 206 PARTIAL CONTENT
Date: Sun, 20 Aug 2017 14:26:42 GMT
Content-Type: audio/mp4
Content-Length: 11
Connection: keep-alive
Content-Range: bytes 0-10/23671
Last-Modified: Sat, 19 Aug 2017 03:25:36 GMT
Accept-Ranges: bytes

abcdefghilm

In the snippet above, we see curl requesting the first chunk of a file.

Leveraging Projections to optimize the handling of media files

Clients and API maintainers can exploit the Projections feature to include/exclude media fields from response payloads.

Suppose that a client stored a document with an image. The image field is called image and it is of media type. At
a later time, the client wants to retrieve the same document but, in order to optimize for speed and since the image is
cached already, it does not want to download the image along with the document. It can do so by requesting the field
to be trimmed out of the response payload:

$ curl -i http://example.com/people/<id>?projection={"image": 0}
HTTP/1.1 200 OK

2.5. Features 41

Eve Documentation, Release 2.1.0

The document will be returned with all its fields except the image field.

Moreover, when setting the datasource property for any given resource endpoint it is possible to explicitly exclude
fields (of media type, but also of any other type) from default responses:

people = {
'datasource': {

'projection': {'image': 0}
},
...

}

Now clients will have to explicitly request the image field to be included with response payloads by sending requests
like this one:

$ curl -i http://example.com/people/<id>?projection={"image": 1}
HTTP/1.1 200 OK

See also

• Configuration

• Advanced Datasource Patterns

for details on the datasource setting.

Note on media files as multipart/form-data

If you are uploading media files as multipart/form-data all the additional fields except the file fields will be treated
as strings for all field validation purposes. If you have already defined some of the resource fields to be of different
type (boolean, number, list etc) the validation rules for these fields would fail, preventing you to successffully submit
your resource.

If you still want to be able to perform field validation in this case, you will have to turn on
MULTIPART_FORM_FIELDS_AS_JSON in your settings file in order to treat the incoming fields as JSON encoded
strings and still be able to validate your fields.

Please note, that in case you indeed turn on MULTIPART_FORM_FIELDS_AS_JSON you will have to submit all resource
fields as properly encoded JSON strings.

For example a number should be submited as 1234 (as you would normally expect). A boolean will have to be send
as true (note the lowercase t). A list of strings as ["abc", "xyz"]. And finally a string, which is the thing
that will most likely trip, you will have to be submitted as "'abc'" (note that it is surrounded with double quotes).
If ever in doubt if what you are submitting is a valid JSON string you can try passing it from the JSON Validator at
http://jsonlint.com/ to be sure that it is correct.

42 Chapter 2. Funding Eve

http://jsonlint.com/

Eve Documentation, Release 2.1.0

Using lists of media

When using lists of media, there is no way to submit these in the default configuration. Enable
AUTO_COLLAPSE_MULTI_KEYS and AUTO_CREATE_LISTS to make this possible. This allows to send multiple val-
ues for one key in multipart/form-data requests and in this way upload a list of files.

2.5.33 GeoJSON

The MongoDB data layer supports geographic data structures encoded in GeoJSON format. All GeoJSON objects
supported by MongoDB are available:

• Point

• Multipoint

• LineString

• MultiLineString

• Polygon

• MultiPolygon

• GeometryCollection

All these objects are implemented as native Eve data types (see Schema Definition) so they are are subject to the proper
validation.

In the example below we are extending the people endpoint by adding a location field of type Point.

people = {
...
'location': {

'type': 'point'
},
...

}

Storing a contact along with its location is pretty straightforward:

$ curl -d '[{"firstname": "barack", "lastname": "obama", "location": {"type":"Point",
→˓"coordinates":[100.0,10.0]}}]' -H 'Content-Type: application/json' http://127.0.0.
→˓1:5000/people
HTTP/1.1 201 OK

Eve also supports GeoJSON Feature and FeatureCollection objects, which are not explicitely mentioned in Mon-
goDB documentation. GeoJSON specification allows object to contain any number of members (name/value pairs).
Eve validation was implemented to be more strict, allowing only two members. This restriction can be disabled by
setting ALLOW_CUSTOM_FIELDS_IN_GEOJSON to True.

2.5. Features 43

http://geojson.org/
http://docs.mongodb.org/manual/applications/geospatial-indexes/#geojson-objects
http://geojson.org/geojson-spec.html#point
http://docs.mongodb.org/manual/applications/geospatial-indexes/#geojson-objects
http://docs.mongodb.org/manual/applications/geospatial-indexes/#geojson-objects

Eve Documentation, Release 2.1.0

Querying GeoJSON Data

As a general rule all MongoDB geospatial query operators and their associated geometry specifiers are supported. In
this example we are using the $near operator to query for all contacts living in a location within 1000 meters from a
certain point:

?where={"location": {"$near": {"$geometry": {"type":"Point", "coordinates": [10.0, 20.0]}
→˓, "$maxDistance": 1000}}}

Please refer to MongoDB documentation for details on geo queries.

2.5.34 Internal Resources

By default responses to GET requests to the home endpoint will include all the resources. The internal_resource
setting keyword, however, allows you to make an endpoint internal, available only for internal data manipulation: no
HTTP calls can be made against it and it will be excluded from the HATEOAS links.

An usage example would be a mechanism for logging all inserts happening in the system, something that can be used
for auditing or a notification system. First we define an internal_transaction endpoint, which is flagged as an
internal_resource:

internal_transactions = {
'schema': {

'entities': {
'type': 'list',

},
'original_resource': {

'type': 'string',
},

},
'internal_resource': True

}

Now, if we access the home endpoint and HATEOAS is enabled, we won’t get the internal-transactions listed (and
hitting the endpoint via HTTP will return a 404.) We can use the data layer to access our secret endpoint. Something
like this:

from eve import Eve

def on_generic_inserted(self, resource, documents):
if resource != 'internal_transactions':

dt = datetime.now()
transaction = {

'entities': [document['_id'] for document in documents],
'original_resource': resource,
config.LAST_UPDATED: dt,
config.DATE_CREATED: dt,

}
app.data.insert('internal_transactions', [transaction])

app = Eve()
app.on_inserted += self.on_generic_inserted

app.run()

44 Chapter 2. Funding Eve

http://docs.mongodb.org/manual/reference/operator/query-geospatial/#query-selectors
http://docs.mongodb.org/manual/reference/operator/query/near/#op._S_near

Eve Documentation, Release 2.1.0

I admit that this example is as rudimentary as it can get, but hopefully it will get the point across.

2.5.35 Enhanced Logging

A number of events are available for logging via the default application logger. The standard LogRecord attributes are
extended with a few request attributes:

clientip IP address of the client performing the request.
url Full request URL, eventual query parameters included.
method Request method (POST, GET, etc.)

You can use these fields when logging to a file or any other destination.

Callback functions can also take advantage of the builtin logger. The following example logs application events to a
file, and also logs custom messages every time a custom function is invoked.

import logging

from eve import Eve

def log_every_get(resource, request, payload):
custom INFO-level message is sent to the log file
app.logger.info('We just answered to a GET request!')

app = Eve()
app.on_post_GET += log_every_get

if __name__ == '__main__':

enable logging to 'app.log' file
handler = logging.FileHandler('app.log')

set a custom log format, and add request
metadata to each log line
handler.setFormatter(logging.Formatter(

'%(asctime)s %(levelname)s: %(message)s '
'[in %(filename)s:%(lineno)d] -- ip: %(clientip)s, '
'url: %(url)s, method:%(method)s'))

the default log level is set to WARNING, so
we have to explicitly set the logging level
to INFO to get our custom message logged.
app.logger.setLevel(logging.INFO)

append the handler to the default application logger
app.logger.addHandler(handler)

let's go
app.run()

Currently only exceptions raised by the MongoDB layer and POST, PATCH and PUT methods are logged. The idea is to
also add some INFO and possibly DEBUG level events in the future.

2.5. Features 45

https://docs.python.org/2/library/logging.html#logrecord-attributes

Eve Documentation, Release 2.1.0

2.5.36 Operations Log

The OpLog is an API-wide log of all edit operations. Every POST, PATCH PUT and DELETE operation can be recorded
to the oplog. At its core the oplog is simply a server log. What makes it a little bit different is that it can be exposed as
a read-only endpoint, thus allowing clients to query it as they would with any other API endpoint.

Every oplog entry contains information about the document and the operation:

• Operation performed

• Unique ID of the document

• Update date

• Creation date

• Resource endpoint URL

• User token, if User-Restricted Resource Access is enabled for the endpoint

• Optional custom data

Like any other API-maintained document, oplog entries also expose:

• Entry ID

• ETag

• HATEOAS fields if that’s enabled.

If OPLOG_AUDIT is enabled entries also expose:

• client IP

• Username or token, if available

• changes applied to the document (for DELETE the whole document is included).

A typical oplog entry looks like this:

{
"o": "DELETE",
"r": "people",
"i": "542d118938345b614ea75b3c",
"c": {...},
"ip": "127.0.0.1",
"u": "admin",
"_updated": "Fri, 03 Oct 2014 08:16:52 GMT",
"_created": "Fri, 03 Oct 2014 08:16:52 GMT",
"_etag": "e17218fbca41cb0ee6a5a5933fb9ee4f4ca7e5d6"
"_id": "542e5b7438345b6dadf95ba5",
"_links": {...},

}

To save a little space (at least on MongoDB) field names have been shortened:

• o stands for operation performed

• r stands for resource endpoint

• i stands for document id

• ip is the client IP

• u stands for user (or token)

46 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

• c stands for changes occurred

• extra is an optional field which you can use to store custom data

_created and _updated are relative to the target document, which comes handy in a variety of scenarios (like when
the oplog is available to clients, more on this later).

Please note that by default the c (changes) field is not included for POST operations. You can add POST to the
OPLOG_CHANGE_METHODS setting (see Global Configuration) if you wish the whole document to be included on every
insertion.

How is the oplog operated?

Seven settings are dedicated to the OpLog:

• OPLOG switches the oplog feature on and off. Defaults to False.

• OPLOG_NAME is the name of the oplog collection on the database. Defaults to oplog.

• OPLOG_METHODS is a list of HTTP methods to be logged. Defaults to all of them.

• OPLOG_ENDPOINT is the endpoint name. Defaults to None.

• OPLOG_AUDIT if enabled, IP addresses and changes are also logged. Defaults to True.

• OPLOG_CHANGE_METHODS determines which methods will log changes. Defaults to [‘PATCH’, ‘PUT’,
‘DELETE’].

• OPLOG_RETURN_EXTRA_FIELD determines if the optional extra field should be returned by the
OPLOG_ENDPOINT. Defaults to False.

As you can see the oplog feature is turned off by default. Also, since OPLOG_ENDPOINT defaults to None, even if you
switch the feature on no public oplog endpoint will be available. You will have to explicitly set the endpoint name in
order to expose your oplog to the public.

The Oplog endpoint

Since the oplog endpoint is nothing but a standard API endpoint, you can customize it. This allows for setting up
custom authentication (you might want this resource to be only accessible for administrative purposes) or any other
useful setting.

Note that while you can change most of its settings, the endpoint will always be read-only so setting either
resource_methods or item_methods to something other than ['GET'] will serve no purpose. Also, unless you
need to customize it, adding an oplog entry to the domain is not really necessary as it will be added for you automati-
cally.

Exposing the oplog as an endpoint could be useful in scenarios where you have multiple clients (say phone, tablet, web
and desktop apps) which need to stay in sync with each other and the server. Instead of hitting every single endpoint
they could just access the oplog to learn all that’s happened since their last access. That’s a single request versus several.
This is not always the best approach a client could take. Sometimes it is probably better to only query for changes on
a certain endpoint. That’s also possible, just query the oplog for changes occured on that endpoint.

2.5. Features 47

Eve Documentation, Release 2.1.0

Extending Oplog entries

Every time the oplog is about to be updated the on_oplog_push event is fired. You can hook one or more callback
functions to this event. Callbacks receive resource and entries as arguments. The former is the resource name
while the latter is a list of oplog entries which are about to be written to disk.

Your callback can add an optional extra field to canonical oplog entries. The field can be of any type. In this example
we are adding a custom dict to each entry:

def oplog_extras(resource, entries):
for entry in entries:

entry['extra'] = {'myfield': 'myvalue'}

app = Eve()

app.on_oplog_push += oplog_extras
app.run()

Please note that unless you explicitly set OPLOG_RETURN_EXTRA_FIELD to True, the extra field will not be returned
by the OPLOG_ENDPOINT.

Note: Are you on MongoDB? Consider making the oplog a capped collection. Also, in case you are wondering yes,
the Eve oplog is blatantly inspired by the awesome Replica Set Oplog.

2.5.37 The Schema Endpoint

Resource schema can be exposed to API clients by enabling Eve’s schema endpoint. To do so, set the
SCHEMA_ENDPOINT configuration option to the API endpoint name from which you want to serve schema data. Once
enabled, Eve will treat the endpoint as a read only resource containing JSON encoded Cerberus schema definitions,
indexed by resource name. Resource visibility and authorization settings are honored, so internal resources or re-
sources for which a request does not have read authentication will not be accessible at the schema endpoint. By default,
SCHEMA_ENDPOINT is set to None.

2.5.38 MongoDB Aggregation Framework

Support for the MongoDB Aggregation Framework is built-in. In the example below (taken from PyMongo) we’ll
perform a simple aggregation to count the number of occurrences for each tag in the tags array, across the entire
collection. To achieve this we need to pass in three operations to the pipeline. First, we need to unwind the tags array,
then group by the tags and sum them up, finally we sort by count.

As python dictionaries don’t maintain order you should use SON or collections OrderedDict where explicit ordering
is required eg $sort:

posts = {
'datasource': {

'aggregation': {
'pipeline': [

{"$unwind": "$tags"},
{"$group": {"_id": "$tags", "count": {"$sum": 1}}},
{"$sort": SON([("count", -1), ("_id", -1)])}

]
(continues on next page)

48 Chapter 2. Funding Eve

http://docs.mongodb.org/manual/core/capped-collections/
http://docs.mongodb.org/manual/core/replica-set-oplog/
https://docs.mongodb.org/v3.0/applications/aggregation/

Eve Documentation, Release 2.1.0

(continued from previous page)

}
}

}

The pipeline above is static. You have the option to allow for dynamic pipelines, whereas the client will directly
influence the aggregation results. Let’s update the pipeline a little bit:

posts = {
'datasource': {

'aggregation': {
'pipeline': [

{"$unwind": "$tags"},
{"$group": {"_id": "$tags", "count": {"$sum": "$value"}}},
{"$sort": SON([("count", -1), ("_id", -1)])}

]
}

}
}

As you can see the count field is now going to sum the value of $value, which will be set by the client upon performing
the request:

$ curl -i http://example.com/posts?aggregate={"$value": 2}

The request above will cause the aggregation to be executed on the server with a count field configured as if it was
a static {"$sum": 2}. The client simply adds the aggregate query parameter and then passes a dictionary with
field/value pairs. Like with all other keywords, you can change aggregate to a keyword of your liking, just set
QUERY_AGGREGATION in your settings.

You can also set all options natively supported by PyMongo. For more information on aggregation see Advanced
Datasource Patterns.

You can pass {} to fields which you want to ignore. Considering the following pipelines:

posts = {
'datasource': {

'aggregation': {
'pipeline': [

{"$match": { "name": "$name", "time": "$time"}}
{"$unwind": "$tags"},
{"$group": {"_id": "$tags", "count": {"$sum": 1}}},

]
}

}
}

If performing the following request:

$ curl -i http://example.com/posts?aggregate={"$name": {"$regex": "Apple"}, "$time": {}}

The stage {"$match": { "name": "$name", "time": "$time"}} in the pipeline will be executed as
{"$match": { "name": {"$regex": "Apple"}}}. And for the following request:

$ curl -i http://example.com/posts?aggregate={"$name": {}, "$time": {}}

2.5. Features 49

Eve Documentation, Release 2.1.0

The stage {"$match": { "name": "$name", "time": "$time"}} in the pipeline will be completely skipped.

The request above will ignore "count": {"$sum": "$value"}}. A Custom callback functions can be attached
to the before_aggregation and after_aggregation event hooks. For more information, see Aggregation event
hooks.

Limitations

Client pagination (?page=2) is enabled by default. This is currently achieved by injecting a $facet stage contian-
ing two sub-pipelines, total_count ($count) and paginated_results ($limit first, then $skip) to the very end of the
aggregation pipeline after the before_aggregation hook. You can turn pagination off by setting pagination to
False for the endpoint. Keep in mind that, when pagination is disabled, all aggregation results are included with every
response. Disabling pagination might be appropriate (and actually advisable) only if the expected response payload is
not huge.

Client sorting (?sort=field1) is not supported at aggregation endpoints. You can of course add one or more $sort
stages to the pipeline, as we did with the example above. If you do add a $sort stage to the pipeline, consider adding
it at the end of the pipeline. According to MongoDB’s $limit documentation (link):

When a $sort immediately precedes a $limit in the pipeline, the sort operation only maintains the top
n results as it progresses, where n is the specified limit, and MongoDB only needs to store n items in
memory.

As we just saw earlier, pagination adds a $limit stage to the end of the pipeline. So if pagination is enabled and $sort
is the last stage of your pipeline, then the resulting combined pipeline should be optimized.

A single endpoint cannot serve both regular and aggregation results. However, since it is possible to setup multiple
endpoints all serving from the same datasource (see Multiple API Endpoints, One Datasource), similar functionality
can be easily achieved.

2.5.39 MongoDB and SQL Support

Support for single or multiple MongoDB database/servers comes out of the box. An SQLAlchemy extension provides
support for SQL backends. Additional data layers can can be developed with relative ease. Visit the extensions page
for a list of community developed data layers and extensions.

2.5.40 Powered by Flask

Eve is based on the Flask micro web framework. Actually, Eve itself is a Flask subclass, which means that Eve ex-
poses all of Flask functionalities and niceties, like a built-in development server and debugger, integrated support for
unittesting and an extensive documentation.

2.6 Configuration

Generally Eve configuration is best done with configuration files. The configuration files themselves are actual Python
files. However, Eve will give precedence to dictionary-based settings first, then it will try to locate a file passed in
EVE_SETTINGS environmental variable (if set) and finally it will try to locate settings.py or a file with filename passed
to settings flag in constructor.

50 Chapter 2. Funding Eve

https://docs.mongodb.org/manual/reference/operator/aggregation/limit/
http://python-eve.org/extensions
http://flask.pocoo.org
http://flask.pocoo.org/docs/quickstart/#debug-mode
http://flask.pocoo.org/docs/testing/
http://flask.pocoo.org/docs/

Eve Documentation, Release 2.1.0

2.6.1 Configuration With Files

On startup, if settings flag is omitted in constructor, Eve will try to locate file named settings.py, first in the application
folder and then in one of the application’s subfolders. You can choose an alternative filename/path, just pass it as an
argument when you instantiate the application. If the file path is relative, Eve will try to locate it recursively in one of
the folders in your sys.path, therefore you have to be sure that your application root is appended to it. This is useful,
for example, in testing environments, when settings file is not necessarily located in the root of your application.

from eve import Eve

app = Eve(settings='my_settings.py')
app.run()

2.6.2 Configuration With a Dictionary

Alternatively, you can choose to provide a settings dictionary. Unlike configuring Eve with the settings file, dictionary-
based approach will only update Eve’s default settings with your own values, rather than overwriting all the settings.

from eve import Eve

my_settings = {
'MONGO_HOST': 'localhost',
'MONGO_PORT': 27017,
'MONGO_DBNAME': 'the_db_name',
'DOMAIN': {'contacts': {}}

}

app = Eve(settings=my_settings)
app.run()

2.6.3 Development / Production

Most applications need more than one configuration. There should be at least separate configurations for the production
server and the one used during development. The easiest way to handle this is to use a default configuration that is
always loaded and part of the version control, and a separate configuration that overrides the values as necessary.

This is the main reason why you can override or extend the settings with the contents of the file the EVE_SETTINGS
environment variable points to. The development/local settings could be stored in settings.py and then, in production,
you could export EVE_SETTINGS=/path/to/production_setting.py, and you are done.

There are many alternative ways to handle development/production however. Using Python modules for configuration
is very convenient, as they allow for all kinds of nice tricks, like being able to seamlessly launch the same API on
both local and production systems, connecting to the appropriate database instance as needed. Consider the following
example:

We want to run seamlessly our API both locally and on Heroku, so:
if os.environ.get('PORT'):

We're hosted on Heroku! Use the MongoHQ sandbox as our backend.
MONGO_HOST = 'alex.mongohq.com'
MONGO_PORT = 10047
MONGO_USERNAME = '<user>'
MONGO_PASSWORD = '<pw>'

(continues on next page)

2.6. Configuration 51

Eve Documentation, Release 2.1.0

(continued from previous page)

MONGO_DBNAME = '<dbname>'
else:

Running on local machine. Let's just use the local mongod instance.

Please note that MONGO_HOST and MONGO_PORT could very well be left
out as they already default to a bare bones local 'mongod' instance.
MONGO_HOST = 'localhost'
MONGO_PORT = 27017
MONGO_USERNAME = 'user'
MONGO_PASSWORD = 'user'
MONGO_DBNAME = 'apitest'

2.6.4 Global Configuration

Besides defining the general API behavior, most global configuration settings are used to define the standard endpoint
ruleset, and can be fine-tuned later, when configuring individual endpoints. Global configuration settings are always
uppercase.

URL_PREFIX URL prefix for all API endpoints. Will be used in conjunction
with API_VERSION to build API endpoints (e.g., api will be
rendered to /api/<endpoint>). Defaults to ''.

API_VERSION API version. Will be used in conjunction with URL_PREFIX
to build API endpoints (e.g., v1 will be rendered to /v1/
<endpoint>). Defaults to ''.

ALLOWED_FILTERS List of fields on which filtering is allowed. Entries in this
list work in a hierarchical way. This means that, for in-
stance, filtering on 'dict.sub_dict.foo' is allowed if
ALLOWED_FILTERS contains any of 'dict.sub_dict.foo,
'dict.sub_dict' or 'dict'. Instead filtering on 'dict'
is allowed if ALLOWED_FILTERS contains 'dict'. Can be
set to [] (no filters allowed) or ['*'] (filters allowed on
every field). Unless your API is comprised of just one
endpoint, this global setting should be used as an on/off
switch, delegating explicit whitelisting at the local level (see
allowed_filters below). Defaults to ['*'].
Please note: If API scraping or DB DoS attacks are a concern,
then globally disabling filters and whitelisting valid ones at
the local level is the way to go.

VALIDATE_FILTERS Whether to validate the filters against the resource schema.
Invalid filters will throw an exception. Defaults to False.
Word of caution: validation on filter expressions involving
fields with custom rules or types might have a considerable
impact on performance. This is the case, for example, with
data_relation-rule fields. Consider excluding heavy-duty
fields from filters (see ALLOWED_FILTERS).

SORTING True if sorting is supported for GET requests, otherwise
False. Can be overridden by resource settings. Defaults to
True.

continues on next page

52 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

Table 1 – continued from previous page
PAGINATION True if pagination is enabled for GET requests, otherwise

False. Can be overridden by resource settings. Defaults to
True.

PAGINATION_LIMIT Maximum value allowed for QUERY_MAX_RESULTS query pa-
rameter. Values exceeding the limit will be silently replaced
with this value. You want to aim for a reasonable compromise
between performance and transfer size. Defaults to 50.

PAGINATION_DEFAULT Default value for QUERY_MAX_RESULTS. Defaults to 25.
OPTIMIZE_PAGINATION_FOR_SPEED Set this to True to improve pagination performance. When

optimization is active no count operation, which can be slow
on large collections, is performed on the database. This does
have a few consequences. Firstly, no document count is re-
turned. Secondly, HATEOAS is less accurate: no last page link
is available, and next page link is always included, even on
last page. On big collections, switching this feature on can
greatly improve performance. Defaults to False (slower per-
formance; document count included; accurate HATEOAS).

QUERY_WHERE Key for the filters query parameter. Defaults to where.
QUERY_SORT Key for the sort query parameter. Defaults to sort.
QUERY_PROJECTION Key for the projections query parameter. Defaults to

projection.
QUERY_PAGE Key for the pages query parameter. Defaults to page.
QUERY_MAX_RESULTS Key for the max results query parameter. Defaults to

max_results.
QUERY_EMBEDDED Key for the embedding query parameter. Defaults to

embedded.
QUERY_AGGREGATION Key for the aggregation query parameter. Defaults to

aggregate.
DATE_FORMAT A Python date format used to parse and render datetime val-

ues. When serving requests, matching JSON strings will
be parsed and stored as datetime values. In responses,
datetime values will be rendered as JSON strings using this
format. Defaults to the RFC1123 (ex RFC 822) standard
a, %d %b %Y %H:%M:%S GMT (“Tue, 02 Apr 2013 10:29:13
GMT”).

RESOURCE_METHODS A list of HTTP methods supported at resource endpoints. Al-
lowed values: GET, POST, DELETE. POST is used for inser-
tions. DELETE will delete all resource contents (enable with
caution). Can be overridden by resource settings. Defaults to
['GET'].

PUBLIC_METHODS A list of HTTP methods supported at resource endpoints,
open to public access even when Authentication and Autho-
rization is enabled. Can be overridden by resource settings.
Defaults to [].

ITEM_METHODS A list of HTTP methods supported at item endpoints.
Allowed values: GET, PATCH, PUT and DELETE. PATCH
or, for clients not supporting PATCH, POST with the
X-HTTP-Method-Override header tag, is used for item up-
dates; DELETE for item deletion. Can be overridden by re-
source settings. Defaults to ['GET'].

continues on next page

2.6. Configuration 53

Eve Documentation, Release 2.1.0

Table 1 – continued from previous page
PUBLIC_ITEM_METHODS A list of HTTP methods supported at item endpoints, left

open to public access when when Authentication and Autho-
rization is enabled. Can be overridden by resource settings.
Defaults to [].

ALLOWED_ROLES A list of allowed roles for resource endpoints. Can be over-
ridden by resource settings. See Authentication and Autho-
rization for more information. Defaults to [].

ALLOWED_READ_ROLES A list of allowed roles for resource endpoints with GET and
OPTIONS methods. Can be overridden by resource settings.
See Authentication and Authorization for more information.
Defaults to [].

ALLOWED_WRITE_ROLES A list of allowed roles for resource endpoints with POST, PUT
and DELETE methods. Can be overridden by resource set-
tings. See Authentication and Authorization for more infor-
mation. Defaults to [].

ALLOWED_ITEM_ROLES A list of allowed roles for item endpoints. See Authentication
and Authorization for more information. Can be overridden
by resource settings. Defaults to [].

ALLOWED_ITEM_READ_ROLES A list of allowed roles for item endpoints with GET and OP-
TIONS methods. See Authentication and Authorization for
more information. Can be overridden by resource settings.
Defaults to [].

ALLOWED_ITEM_WRITE_ROLES A list of allowed roles for item endpoints with PUT, PATCH
and DELETE methods. See Authentication and Authoriza-
tion for more information. Can be overridden by resource
settings. Defaults to [].

ALLOW_OVERRIDE_HTTP_METHOD Enables / Disables global the possibility to override the sent
method with a header X-HTTP-METHOD-OVERRIDE.

CACHE_CONTROL Value of the Cache-Control header field used when serv-
ing GET requests (e.g., max-age=20,must-revalidate).
Leave empty if you don’t want to include cache directives
with API responses. Can be overridden by resource settings.
Defaults to ''.

CACHE_EXPIRES Value (in seconds) of the Expires header field used when
serving GET requests. If set to a non-zero value, the
header will always be included, regardless of the setting of
CACHE_CONTROL. Can be overridden by resource settings.
Defaults to 0.

X_DOMAINS CORS (Cross-Origin Resource Sharing) support. Allows
API maintainers to specify which domains are allowed to per-
form CORS requests. Allowed values are: None, a list of do-
mains, or '*' for a wide-open API. Defaults to None.

X_DOMAINS_RE The same setting as X_DOMAINS, but a list of regexes is al-
lowed. This is useful for websites with dynamic ranges of
subdomains. Make sure to properly anchor and escape the
regexes. Invalid regexes (such as '*') are ignored. Defaults
to None.

X_HEADERS CORS (Cross-Origin Resource Sharing) support. Allows
API maintainers to specify which headers are allowed to be
sent with CORS requests. Allowed values are: None or a list
of headers names. Defaults to None.

continues on next page

54 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

Table 1 – continued from previous page
X_EXPOSE_HEADERS CORS (Cross-Origin Resource Sharing) support. Allows

API maintainers to specify which headers are exposed within
a CORS response. Allowed values are: None or a list of head-
ers names. Defaults to None.

X_ALLOW_CREDENTIALS CORS (Cross-Origin Resource Sharing) support. Allows
API maintainers to specify if cookies can be sent by clients.
The only allowed value is: True, any other will be ignored.
Defaults to None.

X_MAX_AGE CORS (Cross-Origin Resource Sharing) support. Allows to
set max age for the access control allow header. Defaults to
21600.

LAST_UPDATED Name of the field used to record a document’s last update
date. This field is automatically handled by Eve. Defaults to
_updated.

DATE_CREATED Name for the field used to record a document creation date.
This field is automatically handled by Eve. Defaults to
_created.

ID_FIELD Name of the field used to uniquely identify resource items
within the database. You want this field to be properly in-
dexed on the database. Can be overridden by resource set-
tings. Defaults to _id.

ITEM_LOOKUP True if item endpoints should be generally available across
the API, False otherwise. Can be overridden by resource
settings. Defaults to True.

ITEM_LOOKUP_FIELD Document field used when looking up a resource item. Can
be overridden by resource settings. Defaults to ID_FIELD.

ITEM_URL URL rule used to construct default item endpoint
URLs. Can be overridden by resource settings. De-
faults regex("[a-f0-9]{24}") which is MongoDB
standard Object_Id format.

ITEM_TITLE Title to be used when building item references, both in XML
and JSON responses. Defaults to resource name, with the
plural ‘s’ stripped if present. Can and most likely will be over-
ridden when configuring single resource endpoints.

AUTH_FIELD Enables User-Restricted Resource Access. When the feature
is enabled, users can only read/update/delete resource items
created by themselves. The keyword contains the actual name
of the field used to store the id of the user who created the re-
source item. Can be overridden by resource settings. Defaults
to None, which disables the feature.

ALLOW_UNKNOWN When True, this option will allow insertion of arbitrary, un-
known fields to any API endpoint. Use with caution. See
Allowing the Unknown for more information. Defaults to
False.

PROJECTION When True, this option enables the Projections feature. Can
be overridden by resource settings. Defaults to True.

EMBEDDING When True, this option enables the Embedded Resource Se-
rialization feature. Defaults to True.

continues on next page

2.6. Configuration 55

Eve Documentation, Release 2.1.0

Table 1 – continued from previous page
BANDWIDTH_SAVER When True, POST, PUT, and PATCH responses only return

automatically handled fields and EXTRA_RESPONSE_FIELDS.
When False, the entire document will be sent. Defaults to
True.

EXTRA_RESPONSE_FIELDS Allows to configure a list of additional document fields
that should be provided with every POST response.
Normally only automatically handled fields (ID_FIELD,
LAST_UPDATED, DATE_CREATED, ETAG) are included in re-
sponse payloads. Can be overridden by resource settings. De-
faults to [], effectively disabling the feature.

RATE_LIMIT_GET A tuple expressing the rate limit on GET requests. The first el-
ement of the tuple is the number of requests allowed, while the
second is the time window in seconds. For example, (300,
60 * 15)would set a limit of 300 requests every 15 minutes.
Defaults to None.

RATE_LIMIT_POST A tuple expressing the rate limit on POST requests. The
first element of the tuple is the number of requests allowed,
while the second is the time window in seconds. For example
(300, 60 * 15) would set a limit of 300 requests every 15
minutes. Defaults to None.

RATE_LIMIT_PATCH A tuple expressing the rate limit on PATCH requests. The
first element of the tuple is the number of requests allowed,
while the second is the time window in seconds. For example
(300, 60 * 15) would set a limit of 300 requests every 15
minutes. Defaults to None.

RATE_LIMIT_DELETE A tuple expressing the rate limit on DELETE requests. The
first element of the tuple is the number of requests allowed,
while the second is the time window in seconds. For example
(300, 60 * 15) would set a limit of 300 requests every 15
minutes. Defaults to None.

DEBUG True to enable Debug Mode, False otherwise.
ERROR Allows to customize the error_code field. Defaults to

_error.
HATEOAS When False, this option disables HATEOAS. Defaults to

True.
ISSUES Allows to customize the issues field. Defaults to _issues.
STATUS Allows to customize the status field. Defaults to _status.
STATUS_OK Status message returned when data validation is successful.

Defaults to OK.
STATUS_ERR Status message returned when data validation failed. Defaults

to ERR.
ITEMS Allows to customize the items field. Defaults to _items.
META Allows to customize the meta field. Defaults to _meta
INFO String value to include an info section, with the given INFO

name, at the Eve homepage (suggested value _info). The
info section will include Eve server version and API version
(API_VERSION, if set). None otherwise, if you do not want
to expose any server info. Defaults to None.

LINKS Allows to customize the links field. Defaults to _links.
ETAG Allows to customize the etag field. Defaults to _etag.

continues on next page

56 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

Table 1 – continued from previous page
IF_MATCH True to enable concurrency control, False otherwise. De-

faults to True. See Data Integrity and Concurrency Control.
ENFORCE_IF_MATCH True to always enforce concurrency control when it is en-

abled, False otherwise. Defaults to True. See Data Integrity
and Concurrency Control.

RENDERERS Allows to change enabled renderers. Defaults to
['eve.render.JSONRenderer', 'eve.render.
XMLRenderer'].

JSON_SORT_KEYS True to enable JSON key sorting, False otherwise. Defaults
to False.

JSON_REQUEST_CONTENT_TYPES Supported JSON content types. Useful when you need sup-
port for vendor-specific json types. Please note: responses
will still carry the standard application/json type. De-
faults to ['application/json'].

VALIDATION_ERROR_STATUS The HTTP status code to use for validation errors. Defaults
to 422.

VERSIONING Enabled documents version control when True. Can be over-
ridden by resource settings. Defaults to False.

VERSIONS Suffix added to the name of the primary collection to create
the name of the shadow collection to store document versions.
Defaults to _versions. When VERSIONING is enabled , a
collection such as myresource_versions would be created
for a resource with a datasource of myresource.

VERSION_PARAM The URL query parameter used to access the specific version
of a document. Defaults to version. Omit this parameter
to get the latest version of a document or use ?version=all`
to get a list of all version of the document. Only valid for
individual item endpoints.

VERSION Field used to store the version number of a document. De-
faults to _version.

LATEST_VERSION Field used to store the latest version number of a document.
Defaults to _latest_version.

VERSION_ID_SUFFIX Used in the shadow collection to store the document id. De-
faults to _document. If ID_FIELD is set to _id, the docu-
ment id will be stored in field _id_document.

MONGO_URI A MongoDB URI which is used in preference of the other
configuration variables.

MONGO_HOST MongoDB server address. Defaults to localhost.
MONGO_PORT MongoDB port. Defaults to 27017.
MONGO_USERNAME MongoDB user name.
MONGO_PASSWORD MongoDB password.
MONGO_DBNAME MongoDB database name.
MONGO_OPTIONS MongoDB keyword arguments to passed to Mongo-

Client class __init__. Defaults to {'connect':
True, 'tz_aware': True, 'appname':
'flask_app_name', 'uuidRepresentation':
'standard'}. See PyMongo mongo_client for refer-
ence.

MONGO_AUTH_SOURCE MongoDB authorization database. Defaults to None.
MONGO_AUTH_MECHANISM MongoDB authentication mechanism. See PyMongo Au-

thentication Mechanisms. Defaults to None.
continues on next page

2.6. Configuration 57

http://docs.mongodb.org/manual/reference/connection-string/#Connections-StandardConnectionStringFormat
https://pymongo.readthedocs.io/en/stable/api/pymongo/mongo_client.html
https://docs.mongodb.com/v3.0/core/authentication-mechanisms/
https://docs.mongodb.com/v3.0/core/authentication-mechanisms/

Eve Documentation, Release 2.1.0

Table 1 – continued from previous page
MONGO_AUTH_MECHANISM_PROPERTIES Specify MongoDB extra authentication mechanism proper-

ties if required. Defaults to None.
MONGO_QUERY_BLACKLIST A list of Mongo query operators that are not allowed to be

used in resource filters (?where=). Defaults to ['$where',
'$regex'].
Mongo JavaScript operators are disabled by default, as they
might be used as vectors for injection attacks. Javascript
queries also tend to be slow and generally can be easily re-
placed with the (very rich) Mongo query dialect.

MONGO_QUERY_WHITELIST A list of extra Mongo query operators to allow besides the
official list of allowed operators. Defaults to [].
Can be overridden at endpoint (Mongo collection) level. See
mongo_query_whitelist below.

MONGO_WRITE_CONCERN A dictionary defining MongoDB write concern settings. All
standard write concern settings (w, wtimeout, j, fsync) are
supported. Defaults to {'w': 1}, which means ‘do regular
acknowledged writes’ (this is also the Mongo default).
Please be aware that setting ‘w’ to a value of 2 or greater
requires replication to be active or you will be getting 500
errors (the write will still happen; Mongo will just be unable
to check that it’s being written to multiple servers).
Can be overridden at endpoint (Mongo collection) level. See
mongo_write_concern below.

DOMAIN A dict holding the API domain definition. See Domain Con-
figuration.

EXTENDED_MEDIA_INFO A list of properties to forward from the file upload driver.
RETURN_MEDIA_AS_BASE64_STRING Controls the embedding of the media type in the endpoint

response. This is useful when you have other means of getting
the binary (like custom Flask endpoints) but still want clients
to be able to POST/PATCH it. Defaults to True.

RETURN_MEDIA_AS_URL Set it to True to enable serving media files at a dedicated
media endpoint. Defaults to False.

MEDIA_BASE_URL Base URL to be used when RETURN_MEDIA_AS_URL is ac-
tive. Combined with MEDIA_ENDPOINT and MEDIA_URL dic-
tates the URL returned for media files. If None, which is the
default value, the API base address will be used instead.

MEDIA_ENDPOINT The media endpoint to be used when
RETURN_MEDIA_AS_URL is enabled. Defaults to media.

MEDIA_URL Format of a file url served at the dedicated media endpoints.
Defaults to regex("[a-f0-9]{24}").

MULTIPART_FORM_FIELDS_AS_JSON In case you are submitting your resource as multipart/
form-data all form data fields will be submitted as strings,
breaking any validation rules you might have on the resource
fields. If you want to treat all submitted form data as JSON
strings you will have to activate this setting. In that case field
validation will continue working correctly. Read more about
how the fields should be formatted at Note on media files as
multipart/form-data. Defaults to False.

continues on next page

58 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

Table 1 – continued from previous page
AUTO_COLLAPSE_MULTI_KEYS If set to True, multiple values sent with the same key, sub-

mitted using the application/x-www-form-urlencoded
or multipart/form-data content types, will automatically
be converted to a list of values.
When using this together with AUTO_CREATE_LISTS it be-
comes possible to use lists of media fields.
Defaults to False

AUTO_CREATE_LISTS When submitting a non list type value for a field with type
list, automatically create a one element list before running
the validators.
Defaults to False

OPLOG Set it to True to enable the Operations Log. Defaults to
False.

OPLOG_NAME This is the name of the database collection where the Opera-
tions Log is stored. Defaults to oplog.

OPLOG_METHODS List of HTTP methods which operations should be logged
in the Operations Log. Defaults to ['DELETE', 'POST',
'PATCH', 'PUT'].

OPLOG_CHANGE_METHODS List of HTTP methods which operations will include changes
into the Operations Log entry. Defaults to ['DELETE',
'PATCH', 'PUT'].

OPLOG_ENDPOINT Name of the Operations Log endpoint. If the endpoint is en-
abled it can be configured like any other API endpoint. Set it
to None to disable the endpoint. Defaults to None.

OPLOG_AUDIT Set it to True to enable the audit feature. When audit is en-
abled client IP and document changes are also logged to the
Operations Log. Defaults to True.

OPLOG_RETURN_EXTRA_FIELD When enabled, the optional extra field will be included in
the payload returned by the OPLOG_ENDPOINT. Defaults to
False.

SCHEMA_ENDPOINT Name of the The Schema Endpoint. Defaults to None.
HEADER_TOTAL_COUNT Custom header containing total count of items in response

payloads for collection GET requests. This is handy for HEAD
requests when client wants to know items count without re-
trieving response body. An example use case is to get the
count of unread posts using where query without loading
posts themselves. Defaults to X-Total-Count.

JSONP_ARGUMENT This option will cause the response to be wrapped in a
JavaScript function call if the argument is set in the request.
For example if you set JSON_ARGUMENT = 'callback',
then all responses to ?callback=funcname requests will be
wrapped in a funcname call. Defaults to None.

BULK_ENABLED Enables bulk insert when set to True. See Bulk Inserts for
more information. Defaults to True.

SOFT_DELETE Enables soft delete when set to True. See Soft Delete for
more information. Defaults to False.

DELETED Field name used to indicate if a document has been deleted
when SOFT_DELETE is enabled. Defaults to _deleted.

SHOW_DELETED_PARAM The URL query parameter used to include soft deleted items
in resource level GET responses. Defaults to ‘show_deleted’.

continues on next page

2.6. Configuration 59

Eve Documentation, Release 2.1.0

Table 1 – continued from previous page
STANDARD_ERRORS This is a list of HTTP error codes for which a standard API

response will be provided. Canonical error response includes
a JSON body with actual error code and description. Set this
to an empty list if you want to disable canonical responses al-
together. Defaults to [400, 401, 403, 404, 405, 406,
409, 410, 412, 422, 428]

VALIDATION_ERROR_AS_LIST If True even single field errors will be returned in a list. By
default single field errors are returned as strings while multi-
ple field errors are bundled in a list. If you want to standardize
the field errors output, set this setting to True and you will al-
ways get a list of field issues. Defaults to False.

UPSERT_ON_PUT PUT attempts to create a document if it does not exist. The
URL endpoint will be used as ID_FIELD value (if ID_FIELD
is included with the payload, it will be ignored). Normal val-
idation rules apply. The response will be a 201 Created on
successful creation. Response payload will be identical the
one you would get by performing a single document POST to
the resource endpoint. Set to False to disable this feature,
and a 404 will be returned instead. Defaults to True.

MERGE_NESTED_DOCUMENTS If True, updates to nested fields are merged with the current
data on PATCH. If False, the updates overwrite the current
data. Defaults to True.

NORMALIZE_DOTTED_FIELDS If True, dotted fields are parsed and processed as subdocu-
ment fields. If False, dotted fields are left unparsed and un-
processed, and the payload is passed to the underlying data-
layer as-is. Please note that with the default Mongo layer,
setting this to False will result in an error. Defaults to True.

NORMALIZE_ON_PATCH If True, the patch document will be normalized according
to schema. This means if a field is not included in the patch
body, it will be reset to the default value in its schema. If
False, the field which is not included in the patch body will
be kept untouched. Defaults to True.

2.6.5 Domain Configuration

In Eve terminology, a domain is the definition of the API structure, the area where you design your API, fine-tune
resources endpoints, and define validation rules.

DOMAIN is a global configuration setting: a Python dictionary where keys are API resources and values their definitions.

Here we define two API endpoints, 'people' and 'works', leaving their
definitions empty.
DOMAIN = {

'people': {},
'works': {},
}

In the following two sections, we will customize the people resource.

60 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

Resource / Item Endpoints

Endpoint customization is mostly done by overriding some global settings, but other unique settings are also available.
Resource settings are always lowercase.

url The endpoint URL. If omitted the resource key of the DOMAIN
dict will be used to build the URL. As an example, contacts
would make the people resource available at /contacts (in-
stead of /people). URL can be as complex as needed and
can be nested relative to another API endpoint (you can have a
/contacts endpoint and then a /contacts/overseas end-
point. Both are independent of each other and freely config-
urable).
You can also use regexes to setup subresource-like endpoints.
See Sub Resources.

allowed_filters List of fields on which filtering is allowed. Entries in this
list work in a hierarchical way. This means that, for in-
stance, filtering on 'dict.sub_dict.foo' is allowed if
allowed_filters contains any of 'dict.sub_dict.foo,
'dict.sub_dict' or 'dict'. Instead filtering on 'dict'
is allowed if allowed_filters contains 'dict'. Can be
set to [] (no filters allowed), or ['*'] (fields allowed on ev-
ery field). Defaults to ['*'].
Please note: If API scraping or DB DoS attacks are a concern,
then globally disabling filters (see ALLOWED_FILTERS above)
and then whitelisting valid ones at the local level is the way
to go.

sorting True if sorting is enabled, False otherwise. Locally over-
rides SORTING.

pagination True if pagination is enabled, False otherwise. Locally
overrides PAGINATION.

pagination_limit Maximum value allowed for QUERY_MAX_RESULTS query pa-
rameter. Values exceeding the limit will be silently replaced
with this value. You want to aim for a reasonable compromise
between performance and transfer size. Defaults to 50.

resource_methods A list of HTTP methods supported at resource endpoint.
Allowed values: GET, POST, DELETE. Locally overrides
RESOURCE_METHODS.
Please note: if you’re running version 0.0.5 or earlier use the
now unsupported methods keyword instead.

public_methods A list of HTTP methods supported at resource endpoint, open
to public access even when Authentication and Authorization
is enabled. Locally overrides PUBLIC_METHODS.

item_methods A list of HTTP methods supported at item endpoint.
Allowed values: GET, PATCH, PUT and DELETE. PATCH
or, for clients not supporting PATCH, POST with the
X-HTTP-Method-Override header tag. Locally overrides
ITEM_METHODS.

public_item_methods A list of HTTP methods supported at item endpoint, left open
to public access when Authentication and Authorization is en-
abled. Locally overrides PUBLIC_ITEM_METHODS.

continues on next page

2.6. Configuration 61

Eve Documentation, Release 2.1.0

Table 2 – continued from previous page
allowed_roles A list of allowed roles for resource endpoint. See Authenti-

cation and Authorization for more information. Locally over-
rides ALLOWED_ROLES.

allowed_read_roles A list of allowed roles for resource endpoint with GET
and OPTIONS methods. See Authentication and Au-
thorization for more information. Locally overrides
ALLOWED_READ_ROLES.

allowed_write_roles A list of allowed roles for resource endpoint with POST, PUT
and DELETE. See Authentication and Authorization for more
information. Locally overrides ALLOWED_WRITE_ROLES.

allowed_item_read_roles A list of allowed roles for item endpoint with GET
and OPTIONS methods. See Authentication and Au-
thorization for more information. Locally overrides
ALLOWED_ITEM_READ_ROLES.

allowed_item_write_roles A list of allowed roles for item endpoint with PUT,
PATH and DELETE methods. See Authentication and
Authorization for more information. Locally overrides
ALLOWED_ITEM_WRITE_ROLES.

allowed_item_roles A list of allowed roles for item endpoint. See Authentication
and Authorization for more information. Locally overrides
ALLOWED_ITEM_ROLES.

cache_control Value of the Cache-Control header field used when serv-
ing GET requests. Leave empty if you don’t want to in-
clude cache directives with API responses. Locally overrides
CACHE_CONTROL.

cache_expires Value (in seconds) of the Expires header field used when
serving GET requests. If set to a non-zero value, the
header will always be included, regardless of the setting of
CACHE_CONTROL. Locally overrides CACHE_EXPIRES.

id_field Field used to uniquely identify resource items within the
database. Locally overrides ID_FIELD.

item_lookup True if item endpoint should be available, False otherwise.
Locally overrides ITEM_LOOKUP.

item_lookup_field Field used when looking up a resource item. Locally over-
rides ITEM_LOOKUP_FIELD.

item_url Rule used to construct item endpoint URL. Locally overrides
ITEM_URL.

resource_title Title used when building resource links (HATEOAS). De-
faults to resource’s url.

item_title Title to be used when building item references, both in XML
and JSON responses. Overrides ITEM_TITLE.

additional_lookup Besides the standard item endpoint which defaults to /
<resource>/<ID_FIELD_value>, you can optionally de-
fine a secondary, read-only, endpoint like /<resource>/
<person_name>. You do so by defining a dictionary com-
prised of two items field and url. The former is the name of
the field used for the lookup. If the field type (as defined in
the resource schema) is a string, then you put a URL rule in
url. If it is an integer, then you just omit url, as it is auto-
matically handled. See the code snippet below for an usage
example of this feature.

continues on next page

62 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

Table 2 – continued from previous page
datasource Explicitly links API resources to database collections. See

Advanced Datasource Patterns.
auth_field Enables User-Restricted Resource Access. When the feature

is enabled, users can only read/update/delete resource items
created by themselves. The keyword contains the actual name
of the field used to store the id of the user who created the
resource item. Locally overrides AUTH_FIELD.

allow_unknown When True, this option will allow insertion of arbitrary, un-
known fields to the endpoint. Use with caution. Locally over-
rides ALLOW_UNKNOWN. See Allowing the Unknown for more
information. Defaults to False.

projection When True, this option enables the Projections feature. Lo-
cally overrides PROJECTION. Defaults to True.

embedding When True this option enables the Embedded Resource Se-
rialization feature. Defaults to True.

extra_response_fields Allows to configure a list of additional document fields
that should be provided with every POST response.
Normally only automatically handled fields (ID_FIELD,
LAST_UPDATED, DATE_CREATED, ETAG) are included in re-
sponse payloads. Overrides EXTRA_RESPONSE_FIELDS.

hateoas When False, this option disables HATEOAS for the resource.
Defaults to True.

mongo_query_whitelist A list of extra Mongo query operators to allow for this end-
point besides the official list of allowed operators. Defaults
to [].

mongo_write_concern A dictionary defining MongoDB write concern settings for
the endpoint datasource. All standard write concern settings
(w, wtimeout, j, fsync) are supported. Defaults to {'w': 1}
which means ‘do regular acknowledged writes’ (this is also
the Mongo default.)
Please be aware that setting ‘w’ to a value of 2 or greater
requires replication to be active or you will be getting 500
errors (the write will still happen; Mongo will just be unable
to check that it’s being written to multiple servers.)

mongo_prefix Allows overriding of the default MONGO prefix, which is used
when retrieving MongoDB settings from configuration.
For example if mongo_prefix is set to MONGO2 then, when
serving requests for the endpoint, MONGO2 prefixed settings
will be used to access the database.
This allows for eventually serving data from a different
database/server at every endpoint.
See also: Auth-driven Database Access.

continues on next page

2.6. Configuration 63

Eve Documentation, Release 2.1.0

Table 2 – continued from previous page
mongo_indexes Allows to specify a set of indexes to be created for this re-

source before the app is launched.
Indexes are expressed as a dict where keys are index
names and values are either a list of tuples of (field, di-
rection) pairs, or a tuple with a list of field/direction pairs
and index options expressed as a dict, such as {'index
name': [('field', 1)], 'index with args':
([('field', 1)], {"sparse": True})}.
Multiple pairs are used to create compound indexes. Direc-
tion takes all kind of values supported by PyMongo, such as
ASCENDING = 1 and DESCENDING = -1. All index options
such as sparse, min, max, etc. are supported (see PyMongo
documentation.)
Please note: keep in mind that index design, creation and
maintenance is a very important task and should be planned
and executed with great care. Usually it is also a very re-
source intensive operation. You might therefore want to han-
dle this task manually, out of the context of API instantiation.
Also remember that, by default, any already existent index for
which the definition has been changed, will be dropped and
re-created.

authentication A class with the authorization logic for the endpoint. If not
provided the eventual general purpose auth class (passed as
application constructor argument) will be used. For details
on authentication and authorization see Authentication and
Authorization. Defaults to None,

embedded_fields A list of fields for which Embedded Resource Serialization is
enabled by default. For this feature to work properly fields in
the list must be embeddable, and embedding must be active
for the resource.

query_objectid_as_string When enabled the Mongo parser will avoid automatically
casting electable strings to ObjectIds. This can be useful
in those rare occurrences where you have string fields in the
database whose values can actually be casted to ObjectId val-
ues, but shouldn’t. It effects queries (?where=) and parsing
of payloads. Defaults to False.

internal_resource When True, this option makes the resource internal. No
HTTP action can be performed on the endpoint, which is still
accessible from the Eve data layer. See Internal Resources
for more information. Defaults to False.

etag_ignore_fields List of fields that should not be used to compute the ETag
value. Defaults to None which means that by default all fields
are included in the computation. It looks like ['field1',
'field2', 'field3.nested_field', ...].

schema A dict defining the actual data structure being handled by the
resource. Enables data validation. See Schema Definition.

bulk_enabled When True this option enables the Bulk Inserts feature for
this resource. Locally overrides BULK_ENABLED.

soft_delete When True this option enables the Soft Delete feature for this
resource. Locally overrides SOFT_DELETE.

continues on next page

64 Chapter 2. Funding Eve

http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.create_index

Eve Documentation, Release 2.1.0

Table 2 – continued from previous page
merge_nested_documents If True, updates to nested fields are merged with the current

data on PATCH. If False, the updates overwrite the current
data. Locally overrides MERGE_NESTED_DOCUMENTS.

normalize_dotted_fields If True, dotted fields are parsed and processed as subdocu-
ment fields. If False, dotted fields are left unparsed and un-
processed, and the payload is passed to the underlying data-
layer as-is. Please note that with the default Mongo layer,
setting this to False will result in an error. Defaults to True.

normalize_on_patch If True, the patch document will be normalized according
to schema. This means if a field is not included in the patch
body, it will be reset to the default value in its schema. If
False, the field which is not included in the patch body will
be kept untouched. Defaults to True.

Here’s an example of resource customization, mostly done by overriding global API settings:

people = {
'title' tag used in item links. Defaults to the resource title minus
the final, plural 's' (works fine in most cases but not for 'people')
'item_title': 'person',

by default, the standard item entry point is defined as
'/people/<ObjectId>/'. We leave it untouched, and we also enable an
additional read-only entry point. This way consumers can also perform
GET requests at '/people/<lastname>'.
'additional_lookup': {

'url': 'regex("[\w]+")',
'field': 'lastname'

},

We choose to override global cache-control directives for this resource.
'cache_control': 'max-age=10,must-revalidate',
'cache_expires': 10,

we only allow GET and POST at this resource endpoint.
'resource_methods': ['GET', 'POST'],

}

2.6.6 Schema Definition

Unless your API is read-only, you probably want to define resource schemas. Schemas are important because they
enable proper validation for incoming streams.

'people' schema definition
schema = {

'firstname': {
'type': 'string',
'minlength': 1,
'maxlength': 10,

},
'lastname': {

(continues on next page)

2.6. Configuration 65

Eve Documentation, Release 2.1.0

(continued from previous page)

'type': 'string',
'minlength': 1,
'maxlength': 15,
'required': True,
'unique': True,

},
'role' is a list, and can only contain values from 'allowed'.
'role': {

'type': 'list',
'allowed': ["author", "contributor", "copy"],

},
An embedded 'strongly-typed' dictionary.
'location': {

'type': 'dict',
'schema': {

'address': {'type': 'string'},
'city': {'type': 'string'}

},
},
'born': {

'type': 'datetime',
},

}

As you can see, schema keys are the actual field names, while values are dicts defining the field validation rules.
Allowed validation rules are:

66 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

type Field data type. Can be one of the following:
• string
• boolean
• integer
• float
• number (integer and float values allowed)
• datetime
• dict
• list
• media

If the MongoDB data layer is used then objectid, dbref
and geographic data structures are also allowed:

• objectid
• dbref
• point
• multipoint
• linestring
• multilinestring
• polygon
• multipolygon
• geometrycollection
• decimal

See GeoJSON for more information geo fields.
required If True, the field is mandatory on insertion.
readonly If True, the field is readonly.
minlength, maxlength Minimum and maximum length allowed for string and

list types.
min, max Minimum and maximum values allowed for integer, float

and number types.
allowed List of allowed values for string and list types.
empty Only applies to string fields. If False, validation will fail if

the value is empty. Defaults to True.
items Defines a list of values allowed in a list of fixed length, see

docs.
schema Validation schema for dict types and arbitrary length list

types. For details and usage examples, see Cerberus docu-
mentation.

unique The value of the field must be unique within the collection.
Please note: validation constraints are checked against the
database, and not between the payload documents them-
selves. This causes an interesting corner case: in the event of
a multiple documents payload where two or more documents
carry the same value for a field where the ‘unique’ constraint
is set, the payload will validate successfully, as there are no
duplicates in the database (yet).
If this is an issue, the client can always send the documents
one at a time for insertion, or validate locally before submit-
ting the payload to the API.

unique_to_user The field value is unique to the user. This is useful when
User-Restricted Resource Access is enabled on an endpoint.
The rule will be validated against user data only. So in this
scenario duplicates are allowed as long as they are stored by
different users. Conversely, a single user cannot store dupli-
cate values.
If URRA is not active on the endpoint, this rule behaves like
unique

unique_within_resource The value of the field must be unique within the resource.
This differs from the unique rule in that it will use the data-
source filter when searching for documents with the same
value for the field. Use this when the resource shares the
database collection with other resources but their documents
should not be taken into account when evaluating the unique-
ness of the field. When used in a resource without datasource
filter, this rule behaves like unique.

data_relation Allows to specify a referential integrity rule that the value
must satisfy in order to validate. It is a dict with four keys:

• resource: the name of the resource being referenced;
• field: the field name in the foreign resource;
• embeddable: set to True if clients can request the ref-

erenced document to be embedded with the serializa-
tion. See Embedded Resource Serialization. Defaults
to False.

• version: set to True to require a _version with the
data relation. See Document Versioning. Defaults to
False.

nullable If True, the field value can be set to None.
default The default value for the field. When serving POST and PUT

requests, missing fields will be assigned the configured de-
fault values.
It works also for types dict and list. The latter is restricted
and works only for lists with schemas (list with a random
number of elements and each element being a dict)

schema = {
Simple default
'title': {
'type': 'string',
'default': 'M.'

},
Default in a dict
'others': {
'type': 'dict',
'schema': {
'code': {
'type': 'integer',
'default': 100

}
}

},
Default in a list of dicts
'mylist': {
'type': 'list',
'schema': {
'type': 'dict',
'schema': {
'name': {'type': 'string'},
'customer': {
'type': 'boolean',
'default': False

}
}

}
}

}

versioning Enabled documents version control when True. Defaults to
False.

versioned If True, this field will be included in the versioned history
of each document when versioning is enabled. Defaults to
True.

valueschema Validation schema for all values of a dict. The dict can have
arbitrary keys, the values for all of which must validate with
given schema. See valueschema in Cerberus docs.

keyschema This is the counterpart to valueschema that validates the
keys of a dict. Validation schema for all values of a dict.
See keyschema in Cerberus docs.

regex Validation will fail if field value does not match the provided
regex rule. Only applies to string fields. See regex in Cer-
berus docs.

dependencies This rule allows a list of fields that must be present in order for
the target field to be allowed. See dependencies in Cerberus
docs.

anyof This rule allows you to list multiple sets of rules to vali-
date against. The field will be considered valid if it validates
against one set in the list. See *of-rules in Cerberus docs.

allof Same as anyof, except that all rule collections in the list must
validate.

noneof Same as anyof, except that it requires no rule collections in
the list to validate.

oneof Same as anyof, except that only one rule collections in the
list can validate.

coerce Type coercion allows you to apply a callable to a value be-
fore any other validators run. The return value of the callable
replaces the new value in the document. This can be used
to convert values or sanitize data before it is validated. See
value coercion in Cerberus docs.

2.6. Configuration 67

http://docs.python-cerberus.org/en/latest/usage.html#items-list
http://docs.python-cerberus.org/en/latest/usage.html#schema-dict
http://docs.python-cerberus.org/en/latest/usage.html#schema-dict
http://docs.python-cerberus.org/en/latest/validation-rules.html#valueschema
http://docs.python-cerberus.org/en/latest/validation-rules.html#keyschema
http://docs.python-cerberus.org/en/latest/validation-rules.html#regex
http://docs.python-cerberus.org/en/latest/validation-rules.html#dependencies
http://docs.python-cerberus.org/en/latest/validation-rules.html#of-rules
http://docs.python-cerberus.org/en/latest/normalization-rules.html#value-coercion

Eve Documentation, Release 2.1.0

Schema syntax is based on Cerberus and yes, it can be extended. In fact, Eve itself extends the original grammar
by adding the unique and data_relation keywords, along with the objectid datatype. For more information on
custom validation and usage examples see Data Validation.

In Resource / Item Endpoints you customized the people endpoint. Then, in this section, you defined people validation
rules. Now you are ready to update the domain which was originally set up in Domain Configuration:

add the schema to the 'people' resource definition
people['schema'] = schema
update the domain
DOMAIN['people'] = people

2.6.7 Advanced Datasource Patterns

The datasource keyword allows to explicitly link API resources to database collections. If omitted, the domain
resource key is assumed to also be the name of the database collection. It is a dictionary with four allowed keys:

source Name of the database collection consumed by the resource. If
omitted, the resource name is assumed to also be a valid col-
lection name. See Multiple API Endpoints, One Datasource.

filter Database query used to retrieve and validate data. If omitted,
by default the whole collection is retrieved. See Predefined
Database Filters.

projection Fieldset exposed by the endpoint. If omitted, by default all
fields will be returned to the client. See Limiting the Fieldset
Exposed by the API Endpoint.

default_sort Default sorting for documents retrieved at the endpoint. If
omitted, documents will be returned with the default database
order. A valid statement would be:
'datasource': {'default_sort': [('name',
1)]}
For more information on sort and filters see Filtering.

aggregation Aggregation pipeline and options. When used all other
datasource settings are ignored, except source. The end-
point will be read-only and no item lookup will be available.
Defaults to None.
This is a dictionary with one or more of the following keys:

• pipeline. The aggregation pipeline. Syntax must
match the one supported by PyMongo. For more infor-
mation see PyMongo Aggregation Examples and the
official MongoDB Aggregation Framework documen-
tation.

• options. Aggregation options. Must be a dictionary
with one or more of these keys:

– allowDiskUse (bool)
– maxTimeMS (int)
– batchSize (int)
– useCursor (bool)

You only need to set options if you want to change any of
PyMongo aggregation defaults.

68 Chapter 2. Funding Eve

http://python-cerberus.org
http://api.mongodb.org/python/current/examples/aggregation.html#aggregation-framework
https://docs.mongodb.org/v3.0/applications/aggregation/
http://api.mongodb.org/python/current/api/pymongo/collection.html#pymongo.collection.Collection.aggregate

Eve Documentation, Release 2.1.0

Predefined Database Filters

Database filters for the API endpoint are set with the filter keyword.

people = {
'datasource': {

'filter': {'username': {'$exists': True}}
}

}

In the example above, the API endpoint for the people resource will only expose and update documents with an existing
username field.

Predefined filters run on top of user queries (GET requests with where clauses) and standard conditional requests (If-
Modified-Since, etc.)

Please note that datasource filters are applied on GET, PATCH and DELETE requests. If your resource allows POST
requests (document insertions), then you will probably want to set the validation rules accordingly (in our example,
‘username’ should probably be a required field).

Static vs Dynamic filters

Predefined filters are static. You can also exploit the Event Hooks system (specifically, on_pre_<METHOD> hooks) to
set up dynamic filters instead.

Multiple API Endpoints, One Datasource

Multiple API endpoints can target the same database collection. For example you can set both /admins and /users
to read and write from the same people collection on the database.

people = {
'datasource': {

'source': 'people',
'filter': {'userlevel': 1}
}

}

The above setting will retrieve, edit and delete only documents from the people collection with a userlevel of 1.

Limiting the Fieldset Exposed by the API Endpoint

By default API responses to GET requests will include all fields defined by the corresponding resource schema. The
projection setting of the datasource resource keyword allows you to redefine the fieldset.

When you want to hide some secret fields from client, you should use inclusive projection setting and include all fields
should be exposed. While, when you want to limit default responses to certain fields but still allow them to be accessible
through client-side projections, you should use exclusive projection setting and exclude fields should be omitted.

The following is an example for inclusive projection setting:

people = {
'datasource': {

'projection': {'username': 1}
(continues on next page)

2.6. Configuration 69

Eve Documentation, Release 2.1.0

(continued from previous page)

}
}

The above setting will expose only the username field to GET requests, no matter the schema defined for the resource.
And other fields will not be exposed even by client-side projection. The following API call will not return lastname or
born.

$ curl -i http://myapi/people?projection={"lastname": 1, "born": 1}
HTTP/1.1 200 OK

You can also exclude fields from API responses. But this time, the excluded fields will be exposed to client-side
projection. The following is an example for exclusive projection setting:

people = {
'datasource': {

'projection': {'username': 0}
}

}

The above will include all document fields but username. However, the following API call will return username this
time. Thus, you can exploit this behaviour to serve media fields or other expensive fields.

In most cases, none or inclusive projection setting is preferred. With inclusive projection, secret fields are taken care
from server side, and default fields returned can be defined by short-cut functions from client-side.

$ curl -i http://myapi/people?projection={"username": 1}
HTTP/1.1 200 OK

Please note that POST and PATCH methods will still allow the whole schema to be manipulated. This feature can come
in handy when, for example, you want to protect insertion and modification behind an Authentication and Authorization
scheme while leaving read access open to the public.

See also

• Projections

• Leveraging Projections to optimize the handling of media files

2.7 Data Validation

Data validation is provided out-of-the-box. Your configuration includes a schema definition for every resource managed
by the API. Data sent to the API to be inserted/updated will be validated against the schema, and a resource will only
be updated if validation passes.

$ curl -d '[{"firstname": "bill", "lastname": "clinton"}, {"firstname": "mitt", "lastname
→˓": "romney"}]' -H 'Content-Type: application/json' http://myapi/people
HTTP/1.1 201 OK

The response will contain a success/error state for each item provided in the request:

70 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

{
"_status": "ERR",
"_error": "Some documents contains errors",
"_items": [

{
"_status": "ERR",
"_issues": {"lastname": "value 'clinton' not unique"}

},
{

"_status": "OK",
}

]
]

In the example above, the first document did not validate so the whole request has been rejected.

When all documents pass validation and are inserted correctly the response status is 201 Created. If any doc-
ument fails validation the response status is 422 Unprocessable Entity, or any other error code defined by
VALIDATION_ERROR_STATUS configuration.

For information on how to define documents schema and standard validation rules, see Schema Definition.

2.7.1 Extending Data Validation

Data validation is based on the Cerberus validation system and it is therefore extensible. As a matter of fact, Eve’s
MongoDB data-layer itself extends Cerberus validation, implementing the unique and data_relation constraints,
the ObjectId data type and the decimal128 on top of the standard rules.

2.7.2 Custom Validation Rules

Suppose that in your specific and very peculiar use case, a certain value can only be expressed as an odd integer. You
decide to add support for a new isodd rule to our validation schema. This is how you would implement that:

from eve.io.mongo import Validator

class MyValidator(Validator):
def _validate_isodd(self, isodd, field, value):

if isodd and not bool(value & 1):
self._error(field, "Value must be an odd number")

app = Eve(validator=MyValidator)

if __name__ == '__main__':
app.run()

By subclassing the base Mongo validator class and then adding a custom _validate_<rulename> method, you ex-
tended the available Schema Definition grammar and now the new custom rule isodd is available in your schema. You
can now do something like:

'schema': {
'oddity': {

'isodd': True,
(continues on next page)

2.7. Data Validation 71

http://python-cerberus.org

Eve Documentation, Release 2.1.0

(continued from previous page)

'type': 'integer'
}

}

Cerberus and Eve also offer function-based validation and type coercion, lightweight alternatives to class-based custom
validation.

2.7.3 Custom Data Types

You can also add new data types by simply adding _validate_type_<typename>methods to your subclass. Consider
the following snippet from the Eve source code.

def _validate_type_objectid(self, value):
""" Enables validation for `objectid` schema attribute.

:param value: field value.
"""
if isinstance(value, ObjectId):

return True

This method enables support for MongoDB ObjectId type in your schema, allowing something like this:

'schema': {
'owner': {

'type': 'objectid',
'required': True,

},
}

You can also check the source code for Eve custom validation, where you will find more advanced use cases, such as
the implementation of the unique and data_relation constraints.

For more information on

Note: We have only scratched the surface of data validation. Please make sure to check the Cerberus documentation
for a complete list of available validation rules and data types.

Also note that Cerberus requirement is pinned to version 0.9.2, which still supports the validate_update method
used for PATCH requests. Upgrade to Cerberus 1.0+ is scheduled for Eve version 0.8.

2.7.4 Allowing the Unknown

Normally you don’t want clients to inject unknown fields in your documents. However, there might be circumstances
where this is desirable. During the development cycle, for example, or when you are dealing with very heterogeneous
data. After all, not forcing normalized information is one of the selling points of MongoDB and many other NoSQL
data stores.

In Eve, you achieve this by setting the ALLOW_UNKNOWN option to True. Once this option is enabled, fields matching the
schema will be validated normally, while unknown fields will be quietly stored without a glitch. You can also enable
this feature only for certain endpoints by setting the allow_unknown local option.

Consider the following domain:

72 Chapter 2. Funding Eve

http://docs.python-cerberus.org/en/latest/customize.html#function-validator
http://docs.python-cerberus.org/en/latest/usage.html#type-coercion
https://github.com/pyeve/eve/blob/master/eve/io/mongo/validation.py
http://python-cerberus.org

Eve Documentation, Release 2.1.0

DOMAIN: {
'people': {

'allow_unknown': True,
'schema': {

'firstname': {'type': 'string'},
}

}
}

Normally you can only add (POST) or edit (PATCH) firstnames to the /people endpoint. However, since
allow_unknown has been enabled, even a payload like this will be accepted:

$ curl -d '[{"firstname": "bill", "lastname": "clinton"}, {"firstname": "bill", "age":70}
→˓]' -H 'Content-Type: application/json' http://myapi/people
HTTP/1.1 201 OK

Please note

Use this feature with extreme caution. Also be aware that, when this option is enabled, clients will be capable of
actually adding fields via PATCH (edit).

ALLOW_UNKNOWN is also useful for read-only APIs or endpoints that need to return the whole document, as found in
the underlying database. In this scenario you don’t want to bother with validation schemas. For the whole API just set
ALLOW_UNKNOWN to True, then schema: {} at every endpoint. For a single endpoint, use allow_unknown: True
instead.

2.7.5 Schema validation

By default, schemas are validated to ensure they conform to the structure documented in Schema Definition.

In order to deal with non-conforming schemas, add Custom Validation Rules for non-conforming keys used in the
schema.

2.8 Authentication and Authorization

2.8.1 Introduction to Security

Authentication is the mechanism whereby systems may securely identify their users. Eve supports several authen-
tication schemes: Basic Authentication, Token Authentication, HMAC Authentication. OAuth2 integration is easily
accomplished.

Authorization is the mechanism by which a system determines what level of access a particular (authenticated) user
should have access to resources controlled by the system. In Eve, you can restrict access to all API endpoints, or only
some of them. You can protect some HTTP verbs while leaving others open. For example, you can allow public read-
only access while leaving item creation and edition restricted to authorized users only. You can also allow GET access
for certain requests and POST access for others by checking the method parameter. There is also support for role-based
access control.

Security is one of those areas where customization is very important. This is why you are provided with a handful of
base authentication classes. They implement the basic authentication mechanism and must be subclassed in order to

2.8. Authentication and Authorization 73

Eve Documentation, Release 2.1.0

implement authorization logic. No matter which authentication scheme you pick the only thing that you need to do in
your subclass is override the check_auth() method.

2.8.2 Global Authentication

To enable authentication for your API just pass the custom auth class on app instantiation. In our example we’re going
to use the BasicAuth base class, which implements the Basic Authentication scheme:

from eve.auth import BasicAuth

class MyBasicAuth(BasicAuth):
def check_auth(self, username, password, allowed_roles, resource,

method):
return username == 'admin' and password == 'secret'

app = Eve(auth=MyBasicAuth)
app.run()

All your API endpoints are now secured, which means that a client will need to provide the correct credentials in order
to consume the API:

$ curl -i http://example.com
HTTP/1.1 401 UNAUTHORIZED
Please provide proper credentials.

$ curl -H "Authorization: Basic YWRtaW46c2VjcmV0" -i http://example.com
HTTP/1.1 200 OK

By default access is restricted to all endpoints for all HTTP verbs (methods), effectively locking down the whole API.

But what if your authentication logic is more complex, and you only want to secure some endpoints or apply different
logics depending on the endpoint being consumed? You could get away with just adding logic to your authentication
class, maybe with something like this:

class MyBasicAuth(BasicAuth):
def check_auth(self, username, password, allowed_roles, resource, method):

if resource in ('zipcodes', 'countries'):
'zipcodes' and 'countries' are public
return True

else:
all the other resources are secured
return username == 'admin' and password == 'secret'

If needed, this approach also allows to take the request method into consideration, for example to allow GET requests
for everyone while forcing validation on edits (POST, PUT, PATCH, DELETE).

74 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

2.8.3 Endpoint-level Authentication

The one class to bind them all approach seen above is probably good for most use cases but as soon as authorization
logic gets more complicated it could easily lead to complex and unmanageable code, something you don’t really want
to have when dealing with security.

Wouldn’t it be nice if we could have specialized auth classes that we could freely apply to selected endpoints? This way
the global level auth class, the one passed to the Eve constructor as seen above, would still be active on all endpoints
except those where different authorization logic is needed. Alternatively, we could even choose to not provide a global
auth class, effectively making all endpoints public, except the ones we want protected. With a system like this we could
even choose to have some endpoints protected with, say, Basic Authentication while others are secured with Token, or
HMAC Authentication!

Well, turns out this is actually possible by simply enabling the resource-level authentication setting when we are
defining the API domain.

DOMAIN = {
'people': {

'authentication': MySuperCoolAuth,
...
},

'invoices': ...
}

And that’s it. The people endpoint will now be using the MySuperCoolAuth class for authentication, while the
invoices endpoint will be using the general-purpose auth class if provided or else it will just be open to the pub-
lic.

There are other features and options that you can use to reduce complexity in your auth classes, especially (but not
only) when using the global level authentication system. Lets review them.

2.8.4 Global Endpoint Security

You might want a public read-only API where only authorized users can write, edit and delete. You can achieve that
by using the PUBLIC_METHODS and PUBLIC_ITEM_METHODS global settings. Add the following to your settings.py:

PUBLIC_METHODS = ['GET']
PUBLIC_ITEM_METHODS = ['GET']

And run your API. POST, PATCH and DELETE are still restricted, while GET is publicly available at all API endpoints.
PUBLIC_METHODS refers to resource endpoints, like /people, while PUBLIC_ITEM_METHODS refers to individual items
like /people/id.

2.8.5 Custom Endpoint Security

Suppose that you want to allow public read access to only certain resources. You do that by declaring public methods
at resource level, while declaring the API domain:

DOMAIN = {
'people': {

'public_methods': ['GET'],
'public_item_methods': ['GET'],
},

}

2.8. Authentication and Authorization 75

Eve Documentation, Release 2.1.0

Be aware that, when present, resource settings override global settings. You can use this to your advantage. Suppose
that you want to grant read access to all endpoints with the only exception of /invoices. You first open read access
for all endpoints:

PUBLIC_METHODS = ['GET']
PUBLIC_ITEM_METHODS = ['GET']

Then you protect the private endpoint:

DOMAIN = {
'invoices': {

'public_methods': [],
'public_item_methods': [],
}

}

Effectively making invoices a restricted resource.

2.8.6 Basic Authentication

The eve.auth.BasicAuth class allows the implementation of Basic Authentication (RFC2617). It should be sub-
classed in order to implement custom authentication.

Basic Authentication with bcrypt

Encoding passwords with bcrypt is a great idea. It comes at the cost of performance, but that’s precisely the point,
as slow encoding means very good resistance to brute-force attacks. For a faster (and less safe) alternative, see the
SHA1/MAC snippet further below.

This script assumes that user accounts are stored in an accounts MongoDB collection, and that passwords are stored
as bcrypt hashes. All API resources/methods will be secured unless they are made explicitly public.

Please note

You will need to install py-bcrypt for this to work.

-*- coding: utf-8 -*-

"""
Auth-BCrypt
~~~~~~~~~~~

Securing an Eve-powered API with Basic Authentication (RFC2617).

You will need to install py-bcrypt: ``pip install py-bcrypt``

This snippet by Nicola Iarocci can be used freely for anything you like.
Consider it public domain.

"""

import bcrypt
from eve import Eve

(continues on next page)

76 Chapter 2. Funding Eve

http://en.wikipedia.org/wiki/Bcrypt


Eve Documentation, Release 2.1.0

(continued from previous page)

from eve.auth import BasicAuth
from flask import current_app as app

class BCryptAuth(BasicAuth):
def check_auth(self, username, password, allowed_roles, resource, method):

# use Eve's own db driver; no additional connections/resources are used
accounts = app.data.driver.db['accounts']
account = accounts.find_one({'username': username})
return account and \

bcrypt.hashpw(password, account['password']) == account['password']

if __name__ == '__main__':
app = Eve(auth=BCryptAuth)
app.run()

Basic Authentication with SHA1/HMAC

This script assumes that user accounts are stored in an accounts MongoDB collection, and that passwords are stored
as SHA1/HMAC hashes. All API resources/methods will be secured unless they are made explicitly public.

# -*- coding: utf-8 -*-

"""
Auth-SHA1/HMAC
~~~~~~~~~~~~~~

Securing an Eve-powered API with Basic Authentication (RFC2617).

Since we are using werkzeug we don't need any extra import (werkzeug being
one of Flask/Eve prerequisites).

This snippet by Nicola Iarocci can be used freely for anything you like.
Consider it public domain.

"""

from eve import Eve
from eve.auth import BasicAuth
from werkzeug.security import check_password_hash
from flask import current_app as app

class Sha1Auth(BasicAuth):
def check_auth(self, username, password, allowed_roles, resource, method):

use Eve's own db driver; no additional connections/resources are used
accounts = app.data.driver.db['accounts']
account = accounts.find_one({'username': username})
return account and \

check_password_hash(account['password'], password)

if __name__ == '__main__':
(continues on next page)

2.8. Authentication and Authorization 77

Eve Documentation, Release 2.1.0

(continued from previous page)

app = Eve(auth=Sha1Auth)
app.run()

2.8.7 Token-Based Authentication

Token-based authentication can be considered a specialized version of Basic Authentication. The Authorization header
tag will contain the auth token as the username, and no password.

This script assumes that user accounts are stored in an accounts MongoDB collection. All API resources/methods will
be secured unless they are made explicitly public (by fiddling with some settings you can open one or more resources
and/or methods to public access -see docs).

-*- coding: utf-8 -*-

"""
Auth-Token
~~~~~~~~~~

Securing an Eve-powered API with Token based Authentication.

This snippet by Nicola Iarocci can be used freely for anything you like.
Consider it public domain.

"""

from eve import Eve
from eve.auth import TokenAuth
from flask import current_app as app

class TokenAuth(TokenAuth):
def check_auth(self, token, allowed_roles, resource, method):

"""For the purpose of this example the implementation is as simple as
possible. A 'real' token should probably contain a hash of the
username/password combo, which should then be validated against the account
data stored on the DB.
"""
# use Eve's own db driver; no additional connections/resources are used
accounts = app.data.driver.db['accounts']
return accounts.find_one({'token': token})

if __name__ == '__main__':
app = Eve(auth=TokenAuth)
app.run()

78 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

2.8.8 HMAC Authentication

The eve.auth.HMACAuth class allows for custom, Amazon S3-like, HMAC (Hash Message Authentication Code)
authentication, which is basically a very secure custom authentication scheme built around the Authorization header.

How HMAC Authentication Works

The server provides the client with a user id and a secret key through some out-of-band technique (e.g., the service
sends the client an e-mail containing the user id and secret key). The client will use the supplied secret key to sign all
requests.

When the client wants to send a request, he builds the complete request and then, using the secret key, computes a hash
over the complete message body (and optionally some of the message headers if required)

Next, the client adds the computed hash and his userid to the message in the Authorization header:

Authorization: johndoe:uCMfSzkjue+HSDygYB5aEg==

and sends it to the service. The service retrieves the userid from the message header and searches the private key for
that user in its own database. Next it computes the hash over the message body (and selected headers) using the key to
generate its hash. If the hash the client sends matches the hash the server computes, then the server knows the message
was sent by the real client and was not altered in any way.

Really the only tricky part is sharing a secret key with the user and keeping that secure. That is why some services
allow for generation of shared keys with a limited life time so you can give the key to a third party to temporarily work
on your behalf. This is also the reason why the secret key is generally provided through out-of-band channels (often a
webpage or, as said above, an email or plain old paper).

The eve.auth.HMACAuth class also support access roles.

HMAC Example

The snippet below can also be found in the examples/security folder of the Eve repository.

from eve import Eve
from eve.auth import HMACAuth
from flask import current_app as app
from hashlib import sha1
import hmac

class HMACAuth(HMACAuth):
def check_auth(self, userid, hmac_hash, headers, data, allowed_roles,

resource, method):
# use Eve's own db driver; no additional connections/resources are
# used
accounts = app.data.driver.db['accounts']
user = accounts.find_one({'userid': userid})
if user:

secret_key = user['secret_key']
# in this implementation we only hash request data, ignoring the
# headers.
return user and \

hmac.new(str(secret_key), str(data), sha1).hexdigest() == \
(continues on next page)

2.8. Authentication and Authorization 79

https://github.com/pyeve/eve


Eve Documentation, Release 2.1.0

(continued from previous page)

hmac_hash

if __name__ == '__main__':
app = Eve(auth=HMACAuth)
app.run()

2.8.9 Role Based Access Control

The code snippets above deliberately ignore the allowed_roles parameter. You can use this parameter to restrict
access to authenticated users who also have been assigned specific roles.

First, you would use the new ALLOWED_ROLES and ALLOWED_ITEM_ROLES global settings (or the corresponding
allowed_roles and allowed_item_roles resource settings).

ALLOWED_ROLES = ['admin']

Then your subclass would implement the authorization logic by making good use of the aforementioned
allowed_roles parameter.

The snippet below assumes that user accounts are stored in an accounts MongoDB collection, that passwords are stored
as SHA1/HMAC hashes and that user roles are stored in a ‘roles’ array. All API resources/methods will be secured
unless they are made explicitly public.

# -*- coding: utf-8 -*-

"""
Auth-SHA1/HMAC-Roles
~~~~~~~~~~~~~~~~~~~~

Securing an Eve-powered API with Basic Authentication (RFC2617) and user
roles.

Since we are using werkzeug we don't need any extra import (werkzeug being
one of Flask/Eve prerequisites).

This snippet by Nicola Iarocci can be used freely for anything you like.
Consider it public domain.

"""

from eve import Eve
from eve.auth import BasicAuth
from werkzeug.security import check_password_hash
from flask import current_app as app

class RolesAuth(BasicAuth):
def check_auth(self, username, password, allowed_roles, resource, method):

use Eve's own db driver; no additional connections/resources are used
accounts = app.data.driver.db['accounts']
lookup = {'username': username}
if allowed_roles:

only retrieve a user if his roles match ``allowed_roles``
(continues on next page)

80 Chapter 2. Funding Eve

Eve Documentation, Release 2.1.0

(continued from previous page)

lookup['roles'] = {'$in': allowed_roles}
account = accounts.find_one(lookup)
return account and check_password_hash(account['password'], password)

if __name__ == '__main__':
app = Eve(auth=RolesAuth)
app.run()

2.8.10 User-Restricted Resource Access

When this feature is enabled, each stored document is associated with the account that created it. This allows the API
to transparently serve only account-created documents on all kinds of requests: read, edit, delete and of course create.
User authentication needs to be enabled for this to work properly.

At the global level this feature is enabled by setting AUTH_FIELD and locally (at the endpoint level) by setting
auth_field. These properties define the name of the field used to store the id of the user who created the docu-
ment. So for example by setting AUTH_FIELD to user_id, you are effectively (and transparently to the user) adding a
user_id field to every stored document. This will then be used to retrieve/edit/delete documents stored by the user.

But how do you set the auth_field value? By invoking the set_request_auth_value() class method. Let us
revise our BCrypt-authentication example from above:

-*- coding: utf-8 -*-

"""
Auth-BCrypt
~~~~~~~~~~~

Securing an Eve-powered API with Basic Authentication (RFC2617).

You will need to install py-bcrypt: ``pip install py-bcrypt``

This snippet by Nicola Iarocci can be used freely for anything you like.
Consider it public domain.

"""

import bcrypt
from eve import Eve
from eve.auth import BasicAuth

class BCryptAuth(BasicAuth):
def check_auth(self, username, password, allowed_roles, resource, method):

# use Eve's own db driver; no additional connections/resources are used
accounts = app.data.driver.db['accounts']
account = accounts.find_one({'username': username})
# set 'auth_field' value to the account's ObjectId
# (instead of _id, you might want to use ID_FIELD)
if account and '_id' in account:

self.set_request_auth_value(account['_id'])
return account and \

(continues on next page)

2.8. Authentication and Authorization 81



Eve Documentation, Release 2.1.0

(continued from previous page)

bcrypt.hashpw(password, account['password']) == account['password']

if __name__ == '__main__':
app = Eve(auth=BCryptAuth)
app.run()

2.8.11 Auth-driven Database Access

Custom authentication classes can also set the database that should be used when serving the active request.

Normally you either use a single database for the whole API or you configure which database each endpoint consumes
by setting mongo_prefix to the desired value (see Resource / Item Endpoints).

However, you might opt to select the target database based on the active token, user or client. This is handy if your use-
case includes user-dedicated database instances. All you have to do is set invoke the set_mongo_prefix() method
when authenticating the request.

A trivial example would be:

from eve.auth import BasicAuth

class MyBasicAuth(BasicAuth):
def check_auth(self, username, password, allowed_roles, resource, method):

if username == 'user1':
self.set_mongo_prefix('MONGO1')

elif username == 'user2':
self.set_mongo_prefix('MONGO2')

else:
# serve all other users from the default db.
self.set_mongo_prefix(None)

return username is not None and password == 'secret'

app = Eve(auth=MyBasicAuth)
app.run()

The above class will serve user1 with data coming from the database which configuration settings are prefixed by
MONGO1 in settings.py. Same happens with user2 and MONGO2 while all other users are served with the default
database.

Since values set by set_mongo_prefix() have precedence over both default and endpoint-level mongo_prefix set-
tings, what happens here is that the two users will always be served from their reserved databases, no matter the eventual
database configuration for the endpoint.

82 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

2.8.12 OAuth2 Integration

Since you have total control over the Authorization process, integrating OAuth2 with Eve is easy. Make yourself
comfortable with the topics illustrated in this page, then head over to Eve-OAuth2, an example project which leverages
Flask-Sentinel to demonstrate how you can protect your API with OAuth2.

Please note

The snippets in this page can also be found in the examples/security folder of the Eve repository.

2.9 Funding

We believe that collaboratively funded software can offer outstanding returns on investment, by encouraging users to
collectively share the cost of development.

The Eve REST framework continues to be open-source and permissively licensed, but we firmly believe it is in the
commercial best-interest for users of the project to invest in its ongoing development.

Signing up as a Backer or Sponsor will:

• Directly contribute to faster releases, more features, and higher quality software.

• Allow more time to be invested in documentation, issue triage, and community support.

• Safeguard the future development of the Eve REST framework.

If you run a business and is using Eve in a revenue-generating product, it would make business sense to sponsor Eve
development: it ensures the project that your product relies on stays healthy and actively maintained. It can also help
your exposure in the Eve community and makes it easier to attract Eve developers.

Of course, individual users are also welcome to make a recurring pledge if Eve has helped you in your work or personal
projects. Alternatively, consider donating as a sign of appreciation - like buying me coffee once in a while :)

2.9.1 Support Eve development

You can support Eve development by pledging on GitHub, Patreon, or PayPal.

• Become a Backer on GitHub

• Become a Backer on Patreon

• Donate via PayPal (one time)

2.9.2 Eve Course at TalkPython Training

There is a 5 hours-long Eve course available for you at the fine TalkPython Training website. The teacher is Nicola,
Eve author and maintainer. Taking this course will directly support the project.

• Take the Eve Course at TalkPython Training

2.9. Funding 83

https://github.com/pyeve/eve-oauth2
https://github.com/pyeve/flask-sentinel
https://github.com/pyeve/eve
https://github.com/sponsors/nicolaiarocci
https://www.patreon.com/nicolaiarocci
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=7U7G7EWU7EPNW
https://training.talkpython.fm/courses/explore_eve/eve-building-restful-mongodb-backed-apis-course


Eve Documentation, Release 2.1.0

2.9.3 Custom Sponsorship and Consulting

If you are a business that is building core products using Eve, I am also open to conversations regarding custom spon-
sorship / consulting arrangements. Just get in touch with me.

Backers

Backers who actively support Eve and Cerberus development:

• Gabriel Wainer

• Jon Kelled

Generous Backers

Generous backers who actively support Eve and Cerberus development:

2.10 Tutorials

2.10.1 RESTful Account Management

Please note

This tutorial assumes that you’ve read the Quickstart and the Authentication and Authorization guides.

Except for the relatively rare occurrence of open (and generally read-only) public APIs, most services are only accessible
to authenticated users. A common pattern is that users create their account on a website or with a mobile application.
Once they have an account, they are allowed to consume one or more APIs. This is the model followed by most social
networks and service providers (Twitter, Facebook, Netflix, etc.) So how do you, the service provider, manage to create,
edit and delete accounts while using the same API that is being consumed by the accounts themselves?

In the following paragraphs we’ll see a couple of possible Account Management implementations, both making in-
tensive use of a host of Eve features such as Custom Endpoint Security, Role Based Access Control, User-Restricted
Resource Access, Event Hooks.

We assume that SSL/TLS is enabled, which means that our transport layer is encrypted, making both Basic Authenti-
cation and Token-Based Authentication valid options to secure API endpoints.

Let’s say we’re upgrading the API we defined in the Quickstart tutorial.

84 Chapter 2. Funding Eve

mailto:nicola@nicolaiarocci.com
http://blokt.com/guides/best-vpn


Eve Documentation, Release 2.1.0

Accounts with Basic Authentication

Our tasks are as follows:

1. Make an endpoint available for all account management activities (/accounts).

2. Secure the endpoint, so that it is only accessible to clients that we control: our own website, mobile apps with
account management capabilities, etc.

3. Make sure that all other API endpoints are only accessible to authenticated accounts (created by means of the
above mentioned endpoint).

4. Allow authenticated users to only access resources created by themselves.

1. The /accounts endpoint

The account management endpoint is no different than any other API endpoint. It is just a matter of declaring it in our
settings file. Let’s declare the resource schema first.

schema = {
'username': {

'type': 'string',
'required': True,
'unique': True,
},

'password': {
'type': 'string',
'required': True,

},
},

Then, let’s define the endpoint.

accounts = {
# the standard account entry point is defined as
# '/accounts/<ObjectId>'. We define an additional read-only entry
# point accessible at '/accounts/<username>'.
'additional_lookup': {

'url': 'regex("[\w]+")',
'field': 'username',

},

# We also disable endpoint caching as we don't want client apps to
# cache account data.
'cache_control': '',
'cache_expires': 0,

# Finally, let's add the schema definition for this endpoint.
'schema': schema,

}

We defined an additional read-only entry point at /accounts/<username>. This isn’t really a necessity, but it can
come in handy to easily verify if a username has been taken already, or to retrieve an account without knowing its
ObjectId beforehand. Of course, both pieces of information can also be found by querying the resource endpoint
(/accounts?where={"username": "johndoe"}), but then we would need to parse the response payload, whereas

2.10. Tutorials 85



Eve Documentation, Release 2.1.0

by hitting our new endpoint with a GET request we will obtain the bare account data, or a 404 Not Found if the
account does not exist.

Once the endpoint has been configured, we need to add it to the API domain:

DOMAIN['accounts'] = accounts

2. Securing the /accounts/ endpoint

2a. Hard-coding our way in

Securing the endpoint can be achieved by allowing only well-known superusers to operate on it. Our authentication
class, which is defined in the launch script, can be hard-coded to handle the case:

import bcrypt
from eve import Eve
from eve.auth import BasicAuth

class BCryptAuth(BasicAuth):
def check_auth(self, username, password, allowed_roles, resource, method):

if resource == 'accounts':
return username == 'superuser' and password == 'password'

else:
# use Eve's own db driver; no additional connections/resources are used
accounts = app.data.driver.db['accounts']
account = accounts.find_one({'username': username})
return account and \

bcrypt.hashpw(password, account['password']) == account['password']

if __name__ == '__main__':
app = Eve(auth=BCryptAuth)
app.run()

Thus, only the superuser account will be allowed to consume the accounts endpoint, while standard authentication
logic will apply to all other endpoints. Our mobile app (say) will add accounts by hitting the endpoint with simple POST
requests, of course authenticating itself as a superuser by means of the Authorization header. The script assumes
that stored passwords are encrypted with bcrypt (storing passwords as plain text is never a good idea). See Basic
Authentication for an alternative, faster but less secure SHA1/MAC example.

2b. User Roles Access Control

Hard-coding usernames and passwords might very well do the job, but it is hardly the best approach that we can take
here. What if another superurser account needs access to the endpoint? Updating the script each time a privileged
user joins the ranks does not seem appropriate (it isn’t). Fortunately, the Role Based Access Control feature can help
us here. You see where we are going with this: the idea is that only accounts with superuser and admin roles will be
granted access to the endpoint.

Let’s start by updating our resource schema.

86 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

schema = {
'username': {

'type': 'string',
'required': True,
},

'password': {
'type': 'string',
'required': True,

},
'roles': {

'type': 'list',
'allowed': ['user', 'superuser', 'admin'],
'required': True,

}
},

We just added a new roles field which is a required list. From now on, one or more roles will have to be assigned on
account creation.

Now we need to restrict endpoint access to superuser and admin accounts only so let’s update the endpoint definition
accordingly.

accounts = {
# the standard account entry point is defined as
# '/accounts/<ObjectId>'. We define an additional read-only entry
# point accessible at '/accounts/<username>'.
'additional_lookup': {

'url': 'regex("[\w]+")',
'field': 'username',

},

# We also disable endpoint caching as we don't want client apps to
# cache account data.
'cache_control': '',
'cache_expires': 0,

# Only allow superusers and admins.
'allowed_roles': ['superuser', 'admin'],

# Finally, let's add the schema definition for this endpoint.
'schema': schema,

}

Finally, a rewrite of our authentication class is in order.

from eve import Eve
from eve.auth import BasicAuth
from werkzeug.security import check_password_hash

class RolesAuth(BasicAuth):
def check_auth(self, username, password, allowed_roles, resource, method):

# use Eve's own db driver; no additional connections/resources are used
accounts = app.data.driver.db['accounts']

(continues on next page)

2.10. Tutorials 87



Eve Documentation, Release 2.1.0

(continued from previous page)

lookup = {'username': username}
if allowed_roles:

# only retrieve a user if his roles match ``allowed_roles``
lookup['roles'] = {'$in': allowed_roles}

account = accounts.find_one(lookup)
return account and check_password_hash(account['password'], password)

if __name__ == '__main__':
app = Eve(auth=RolesAuth)
app.run()

What the above snippet does is secure all API endpoints with role-base access control. It is, in fact, the same snippet
seen in Role Based Access Control. This technique allows us to keep the code untouched as we add more superuser or
admin accounts (and we’ll probably be adding them by accessing our very own API). Also, should the need arise, we
could easily restrict access to more endpoints just by updating the settings file, again without touching the authentication
class.

3. Securing other API endpoints

This will be quick, as both the hard-coding and the role-based access control approaches above effectively secure all
API endpoints already. Passing an authentication class to the Eve object enables authentication for the whole API:
every time an endpoint is hit with a request, the class instance is invoked.

Of course, you can still fine-tune security, for example by allowing public access to certain endpoints, or to certain
HTTP methods. See Authentication and Authorization for more details.

4. Only allowing access to account resources

Most of the time when you allow Authenticated users to store data, you only want them to access their own data.
This can be convenientely achieved by using the User-Restricted Resource Access feature. When enabled, each stored
document is associated with the account that created it. This allows the API to transparently serve only account-created
documents on all kind of requests: read, edit, delete and of course create.

There are only two things that we need to do in order to activate this feature:

1. Configure the name of the field that will be used to store the owner of the document;

2. Set the document owner on each incoming POST request.

Since we want to enable this feature for all of our API endpoints we’ll just update our settings.py file by setting a
proper AUTH_FIELD value:

# Name of the field used to store the owner of each document
AUTH_FIELD = 'user_id'

Then, we want to update our authentication class to properly update the field’s value:

from eve import Eve
from eve.auth import BasicAuth
from werkzeug.security import check_password_hash

(continues on next page)

88 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

(continued from previous page)

class RolesAuth(BasicAuth):
def check_auth(self, username, password, allowed_roles, resource, method):

# use Eve's own db driver; no additional connections/resources are used
accounts = app.data.driver.db['accounts']
lookup = {'username': username}
if allowed_roles:

# only retrieve a user if his roles match ``allowed_roles``
lookup['roles'] = {'$in': allowed_roles}

account = accounts.find_one(lookup)
# set 'AUTH_FIELD' value to the account's ObjectId
# (instead of _Id, you might want to use ID_FIELD)
self.set_request_auth_value(account['_id'])
return account and check_password_hash(account['password'], password)

if __name__ == '__main__':
app = Eve(auth=RolesAuth)
app.run()

This is all we need to do. Now when a client hits say the /invoices endpoint with a GET request, it will only be served
with invoices created by its own account. The same will happen with DELETE and PATCH, making it impossible for
an authenticated user to accidentally retrieve, edit or delete other people’s data.

Accounts with Token Authentication

As seen in Token-Based Authentication, token authentication is just a specialized version of Basic Authentication. It
is actually executed as a standard Basic Authentication request where the value of the username field is used for the
token, and the password field is not provided (if included, it is ignored).

Consequently, handling accounts with Token Authentication is very similar to what we saw in Accounts with Basic Au-
thentication, but there’s one little caveat: tokens need to be generated and stored along with the account, and eventually
returned to the client.

In light of this, let’s review our updated task list:

1. Make an endpoint available for all account management activities (/accounts).

2. Secure the endpoint so that it is only accessible to clients (tokens) that we control.

3. On account creation, generate and store its token.

4. Optionally, return the new token with the response.

5. Make sure that all other API endpoints are only accessible to authenticated tokens.

6. Allow authenticated users to only access resources created by themselves

2.10. Tutorials 89



Eve Documentation, Release 2.1.0

1. The /accounts/ endpoint

This isn’t any different than what we did in Accounts with Basic Authentication. We just need to add the token field to
our schema:

schema = {
'username': {

'type': 'string',
'required': True,
'unique': True,
},

'password': {
'type': 'string',
'required': True,

},
'roles': {

'type': 'list',
'allowed': ['user', 'superuser', 'admin'],
'required': True,

},
'token': {

'type': 'string',
'required': True,

}
}

2. Securing the /accounts/ endpoint

We defined the roles field for the accounts schema in the previous step. We also need to define the endpoint, making
sure that we set the allowed user roles.

accounts = {
# the standard account entry point is defined as
# '/accounts/<ObjectId>'. We define an additional read-only entry
# point accessible at '/accounts/<username>'.
'additional_lookup': {

'url': 'regex("[\w]+")',
'field': 'username',

},

# We also disable endpoint caching as we don't want client apps to
# cache account data.
'cache_control': '',
'cache_expires': 0,

# Only allow superusers and admins.
'allowed_roles': ['superuser', 'admin'],

# Finally, let's add the schema definition for this endpoint.
'schema': schema,

}

And finally, here is our launch script which is, of course, using a TokenAuth subclass this time around:

90 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

from eve import Eve
from eve.auth import TokenAuth

class RolesAuth(TokenAuth):
def check_auth(self, token, allowed_roles, resource, method):

# use Eve's own db driver; no additional connections/resources are used
accounts = app.data.driver.db['accounts']
lookup = {'token': token}
if allowed_roles:

# only retrieve a user if his roles match ``allowed_roles``
lookup['roles'] = {'$in': allowed_roles}

account = accounts.find_one(lookup)
return account

if __name__ == '__main__':
app = Eve(auth=RolesAuth)
app.run()

3. Building custom tokens on account creation

The code above has a problem: it won’t authenticate anybody, as we aren’t generating any token yet. Consequently,
clients aren’t getting their auth tokens back so they don’t really know how to authenticate. Let’s fix that by using the
awesome Event Hooks feature. We’ll update our launch script by registering a callback function that will be called
when a new account is about to be stored to the database.

from eve import Eve
from eve.auth import TokenAuth
import random
import string

class RolesAuth(TokenAuth):
def check_auth(self, token, allowed_roles, resource, method):

# use Eve's own db driver; no additional connections/resources are used
accounts = app.data.driver.db['accounts']
lookup = {'token': token}
if allowed_roles:

# only retrieve a user if his roles match ``allowed_roles``
lookup['roles'] = {'$in': allowed_roles}

account = accounts.find_one(lookup)
return account

def add_token(documents):
# Don't use this in production:
# You should at least make sure that the token is unique.
for document in documents:

document["token"] = (''.join(random.choice(string.ascii_uppercase)
for x in range(10)))

(continues on next page)

2.10. Tutorials 91



Eve Documentation, Release 2.1.0

(continued from previous page)

if __name__ == '__main__':
app = Eve(auth=RolesAuth)
app.on_insert_accounts += add_token
app.run()

As you can see, we are subscribing to the on_insert event of the accounts endpoint with our add_token function.
This callback will receive documents as an argument, which is a list of validated documents accepted for database
insertion. We simply add (or replace in the unlikely case that the request contained it already) a token to every document,
and we’re done! For more information on callbacks, see Event Hooks.

4. Returning the token with the response

Optionally, you might want to return the tokens with the response. Truth be told, this isn’t a very good idea. You
generally want to send access information out-of-band, with an email for example. However we’re assuming that
we are on SSL, and there are cases where sending the auth token just makes sense, like when the client is a mobile
application and we want the user to use the service right away.

Normally, only automatically handled fields (ID_FIELD, LAST_UPDATED, DATE_CREATED, ETAG) are included with
POST response payloads. Fortunately, there’s a setting which allows us to inject additional fields in responses, and
that is EXTRA_RESPONSE_FIELDS, with its endpoint-level equivalent, extra_response_fields. All we need to do
is update our endpoint definition accordingly:

accounts = {
# the standard account entry point is defined as
# '/accounts/<ObjectId>'. We define an additional read-only entry
# point accessible at '/accounts/<username>'.
'additional_lookup': {

'url': 'regex("[\w]+")',
'field': 'username',

},

# We also disable endpoint caching as we don't want client apps to
# cache account data.
'cache_control': '',
'cache_expires': 0,

# Only allow superusers and admins.
'allowed_roles': ['superuser', 'admin'],

# Allow 'token' to be returned with POST responses
'extra_response_fields': ['token'],

# Finally, let's add the schema definition for this endpoint.
'schema': schema,

}

From now on responses to POST requests aimed at the /accounts endpoint will include the newly generated auth
token, allowing the client to consume other API endpoints right away.

92 Chapter 2. Funding Eve

http://python-eve.org/features.html#event-hooks


Eve Documentation, Release 2.1.0

5. Securing other API endpoints

As we’ve seen before, passing an authentication class to the Eve object enables authentication for all API endpoints.
Again, you can still fine-tune security by allowing public access to certain endpoints or to certain HTTP methods. See
Authentication and Authorization for more details.

6. Only allowing access to account resources

This is achieved with the User-Restricted Resource Access feature, as seen in Accounts with Basic Authentication. You
might want to store the user token as your AUTH_FIELD value, but if you want user tokens to be easily revocable, then
your best option is to use the account unique id for this.

Basic vs Token: Final Considerations

Despite being a little more tricky to set up on the server side, Token Authentication offers significant advantages. First,
you don’t have passwords stored on the client and being sent over the wire with every request. If you’re sending your
tokens out-of-band, and you’re on SSL/TLS, that’s quite a lot of additional security.

2.10.2 Handling custom ID fields

When it comes to individual document endpoints, in most cases you don’t have anything to do besides defining the
parent resource endpoint. So let’s say that you configure a /invoices endpoint, which will allow clients to query
the underlying invoices database collection. The /invoices/<ObjectId> endpoint will be made available by the
framework, and will be used by clients to retrieve and/or edit individual documents. By default, Eve provides this
feature seamlessly when ID_FIELD fields are of ObjectId type.

However, you might have collections where your unique identifier is not an ObjectId, and you still want individual
document endpoints to work properly. Don’t worry, it’s doable, it only requires a little tinkering.

Handling UUID fields

In this tutorial we will consider a scenario in which one of our database collections (invoices) uses UUID fields as unique
identifiers. We want our API to expose a document endpoint like /invoices/uuid, which translates to something
like:

/invoices/48c00ee9-4dbe-413f-9fc3-d5f12a91de1c.

These are the steps we need to follow:

1. Craft a custom JSONEncoder that is capable of serializing UUIDs as strings and pass it to our Eve application.

2. Add support for a new uuid data type so we can properly validate incoming uuid values.

3. Configure our invoices endpoint so Eve knows how to properly parse UUID urls.

2.10. Tutorials 93



Eve Documentation, Release 2.1.0

Custom JSONEncoder

The Eve default JSON serializer is perfectly capable of serializing common data types like datetime (serialized to a
RFC1123 string, like Sat, 23 Feb 1985 12:00:00 GMT) and ObjectId values (also serialized to strings).

Since we are adding support for an unknown data type, we also need to instruct our Eve instance on how to properly
serialize it. This is as easy as subclassing a standard JSONEncoder or, even better, Eve’s own BaseJSONEncoder, so
our custom serializer will preserve all of Eve’s serialization magic:

from eve.io.base import BaseJSONEncoder
from uuid import UUID

class UUIDEncoder(BaseJSONEncoder):
""" JSONEconder subclass used by the json render function.
This is different from BaseJSONEoncoder since it also addresses
encoding of UUID
"""

def default(self, obj):
if isinstance(obj, UUID):

return str(obj)
else:

# delegate rendering to base class method (the base class
# will properly render ObjectIds, datetimes, etc.)
return super(UUIDEncoder, self).default(obj)

UUID Validation

By default Eve creates a unique identifier for each newly inserted document, and that is of ObjectId type. This is not
what we want to happen at this endpoint. Here we want the client itself to provide the unique identifiers, and we also
want to validate that they are of UUID type. In order to achieve that, we first need to extend our data validation layer
(see Data Validation for details on custom validation):

from eve.io.mongo import Validator
from uuid import UUID

class UUIDValidator(Validator):
"""
Extends the base mongo validator adding support for the uuid data-type
"""
def _validate_type_uuid(self, value):

try:
UUID(value)
return True

except ValueError:
pass

94 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

UUID URLs

Now Eve is capable of rendering and validating UUID values but it still doesn’t know which resources are going to use
these features. We also need to set item_url so uuid formed urls can be properly parsed. Let’s pick our settings.py
module and update the API domain accordingly:

invoices = {
# this resource item endpoint (/invoices/<id>) will match a UUID regex.
'item_url': 'regex("[a-f0-9]{8}-?[a-f0-9]{4}-?4[a-f0-9]{3}-?[89ab][a-f0-9]{3}-?[a-f0-

→˓9]{12}")',
'schema': {

# set our _id field of our custom uuid type.
'_id': {'type': 'uuid'},

},
}

DOMAIN = {
'invoices': invoices

}

If all your API resources are going to support uuid as unique document identifiers then you might just want to set the
global ITEM_URL to the uuid regex in order to avoid setting it for every single resource endpoint.

Passing the UUID juice to Eve

Now all the missing pieces are there we only need to instruct Eve on how to use them. Eve needs to know about the
new data type when its building the URL map, so we need to pass our custom classes right at the beginning, when we
are instancing the application:

app = Eve(json_encoder=UUIDEncoder, validator=UUIDValidator)

Remember, if you are using custom ID_FIELD values then you should not rely on MongoDB (and Eve) to auto-generate
the ID_FIELD for you. You are supposed to pass the value, like so:

POST
{"name":"bill", "_id":"48c00ee9-4dbe-413f-9fc3-d5f12a91de1c"}

Note: By default, Eve sets PyMongo’s UuidRepresentation to standard. This allows for seamlessly handling of
modern Python-generated UUID values. You can change the default by setting the uuidRepresentation value of
MONGO_OPTIONS as desired. For more informations, see PyMongo documentation.

2.10. Tutorials 95

https://pymongo.readthedocs.io/en/stable/examples/uuid.html#configuring-uuid-representation


Eve Documentation, Release 2.1.0

2.10.3 Learn Eve at TalkPython Training

There is a 5 hours-long Eve course available for you at the fine TalkPython Training website. The teacher is Nicola,
Eve author and maintainer. Taking this course will directly support the project.

• Take the Eve Course at TalkPython Training

2.11 Snippets

Welcome to the Eve snippet archive. This is the place where anyone can drop helpful pieces of code for others to use.

2.11.1 Available Snippets

Using Eve Event Hooks from your Blueprint

by Pau Freixes

The use of Flask Blueprints helps us to extend our Eve applications with new endpoints that do not fit as a typical
Eve resource. Pulling these endpoints out of the Eve scope allows us to write specific code in order to handle specific
situations.

In the context of a Blueprint we could expect Eve features not be available, but often that is not the case. We can
continue to use a bunch of features, such as Event Hooks.

Next snippet displays how the users module has a blueprint which performs some custom actions and then uses the
users_deleted signal to notify and invoke all callback functions which are registered to the Eve application.

from flask import Blueprint, current_app as app

blueprint = Blueprint('prefix_uri', __name__)

@blueprint.route('/users/<username>', methods=['DELETE'])
def del_user(username):

# some specific code goes here
# ...

# call Eve-hooks consumers for this event
getattr(app, "users_deleted")(username)

Next snippet displays how the blueprint is binded over our main Eve application and how the specific
set_username_as_none function is registered to be called each time an user is deleted using the Eve events, to
update the properly MongoDB collection.

from eve import Eve
from users import blueprint
from flask import current_app, request

def set_username_as_none(username):
resource = request.endpoint.split('|')[0]
return current_app.data.driver.db[resource].update(

{"user" : username},
{"$set": {"user": None}},
multi=True

(continues on next page)

96 Chapter 2. Funding Eve

https://training.talkpython.fm/courses/explore_eve/eve-building-restful-mongodb-backed-apis-course
http://flask.pocoo.org/docs/blueprints/


Eve Documentation, Release 2.1.0

(continued from previous page)

)

app = Eve()
# register the blueprint to the main Eve application
app.register_blueprint(blueprint)
# bind the callback function so it is invoked at each user deletion
app.users_deleted += set_username_as_none
app.run()

Supporting both list-level and item-level CRUD operations

by John Chang

This is an example of how to implement a simple list of items that supports both list-level and item-level CRUD
operations.

Specifically, it should be possible to use a single GET to get the entire list (including all items) but also a single POST
to append an item (rather than PATCHing the list).

The solution was to database event hooks to inject the embedded child documents (items) into the parent list before
it’s returned to the client and also delete the child items when the parent list is deleted. This works, although it results
in two DB queries.

main.py

from eve import Eve
from bson.objectid import ObjectId

app = Eve()
mongo = app.data.driver

def after_fetching_lists(response):
list_id = response['_id']
f = {'list_id': ObjectId(list_id)}
response['items'] = list(mongo.db.items.find(f))

def after_deleting_lists(item):
list_id = item['_id']
f = {'list_id': ObjectId(list_id)}
mongo.db.items.delete_many(f)

app.on_fetched_item_lists += after_fetching_lists
app.on_deleted_item_lists += after_deleting_lists

app.run()

2.11. Snippets 97



Eve Documentation, Release 2.1.0

settings.py

import os

DEBUG = True

MONGO_HOST = os.environ.get('MONGO_HOST', 'localhost')
MONGO_PORT = os.environ.get('MONGO_PORT', 27017)
MONGO_USERNAME = os.environ.get('MONGO_USERNAME', 'user')
MONGO_PASSWORD = os.environ.get('MONGO_PASSWORD', 'user')
MONGO_DBNAME = os.environ.get('MONGO_DBNAME', 'listtest')

RESOURCE_METHODS = ['GET', 'POST', 'DELETE']
ITEM_METHODS = ['GET', 'PUT', 'PATCH', 'DELETE']

DOMAIN = {
'lists': {

'schema': {
'title': {

'type': 'string'
}

}
},
'items': {

'url': 'lists/<regex("[a-f0-9]{24}"):list_id>/items',
'schema': {

'list_id': {
'type': 'objectid',
'data_relation': {

'resource': 'lists',
'field': '_id'

}
},
'name': {

'type': 'string',
'required': True

}
}

}
}

Usage

$ curl -i -X POST http://127.0.0.1:5000/lists -d title="My List"
HTTP/1.0 201 CREATED

{
"_id": "58960f83a663e2e6746dfa6a",
:

}

(continues on next page)

98 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

(continued from previous page)

$ curl -i -X POST http://127.0.0.1:5000/lists/58960f83a663e2e6746dfa6a/items -d
→˓'name=Alice'
HTTP/1.0 201 CREATED

$ curl -i -X POST http://127.0.0.1:5000/lists/58960f83a663e2e6746dfa6a/items -d 'name=Bob
→˓'
HTTP/1.0 201 CREATED

$ curl -i -X GET http://127.0.0.1:5000/lists/58960f83a663e2e6746dfa6a
HTTP/1.0 200 OK

{
"_created": "Sat, 04 Feb 2017 17:29:39 GMT",
"_etag": "01799f6be25a044ab95cfeb2dc0f834d11b796d8",
"_id": "58960f83a663e2e6746dfa6a",
"_updated": "Sat, 04 Feb 2017 17:29:39 GMT",
"items": [

{
"_created": "Sat, 04 Feb 2017 17:30:06 GMT",
"_etag": "72ad9248ad5bf45c7bfe3e03a1b9bc384d94572f",
"_id": "58960f9ea663e2e6746dfa6b",
"_updated": "Sat, 04 Feb 2017 17:30:06 GMT",
"list_id": "58960f83a663e2e6746dfa6a",
"name": "Alice",
"quantity": 1

},
{

"_created": "Sat, 04 Feb 2017 17:30:13 GMT",
"_etag": "447f51b057fb5e0a70472e96ff883c64b5e2e308",
"_id": "58960fa5a663e2e6746dfa6c",
"_updated": "Sat, 04 Feb 2017 17:30:13 GMT",
"list_id": "58960f83a663e2e6746dfa6a",
"name": "Bob",
"quantity": 1

}
],
"title": "My List"

}

$ curl -i -X DELETE http://127.0.0.1:5000/lists/58960f83a663e2e6746dfa6a/items/
→˓58960f9ea663e2e6746dfa6b -H "If-Match: 72ad9248ad5bf45c7bfe3e03a1b9bc384d94572f"
HTTP/1.0 204 NO CONTENT

$ curl -i -X GET http://127.0.0.1:5000/lists/58960f83a663e2e6746dfa6a
HTTP/1.0 200 OK

{
"_created": "Sat, 04 Feb 2017 17:29:39 GMT",
"_etag": "01799f6be25a044ab95cfeb2dc0f834d11b796d8",
"_id": "58960f83a663e2e6746dfa6a",
"_updated": "Sat, 04 Feb 2017 17:29:39 GMT",
"items": [

(continues on next page)

2.11. Snippets 99



Eve Documentation, Release 2.1.0

(continued from previous page)

{
"_created": "Sat, 04 Feb 2017 17:30:13 GMT",
"_etag": "447f51b057fb5e0a70472e96ff883c64b5e2e308",
"_id": "58960fa5a663e2e6746dfa6c",
"_updated": "Sat, 04 Feb 2017 17:30:13 GMT",
"list_id": "58960f83a663e2e6746dfa6a",
"name": "Bob",
"quantity": 1

}
],
"title": "My List"

}

2.11.2 Add your snippet

Want to add your snippet? Just add your own .rst file to the snippets folder (see the template below for reference),
update the TOC in this page (see source), and then submit a pull request.

Snippet Template

by Firstname Lastname

This is a snippet template. Put your snippet explanation here. If this is going to be long, make sure to split it into
paragraphs for enhanced reading experience. Make your code snippet follow, like so:

from eve import Eve

# just an example of a code snippet
app = Eve()
app.run()

Add closing comments as needed.

2.12 Extensions

Welcome to the Eve extensions registry. Here you can find a list of packages that extend Eve. This list is moderated
and updated on a regular basis. If you wrote a package for Eve and want it to show up here, just get in touch and show
me your tool!

• Eve-Auth-JWT

• Eve-Elastic

• Eve-Healthcheck

• Eve-Mocker

• Eve-Mongoengine

• Eve-Neo4j

• Eve-OAuth2 and Flask-Sentinel

• Eve-SQLAlchemy

100 Chapter 2. Funding Eve

https://github.com/pyeve/eve/tree/master/docs/snippets
https://raw.githubusercontent.com/pyeve/eve/master/docs/snippets/index.rst
https://github.com/pyeve/eve/pulls
mailto:eve@nicolaiarocci.com
https://github.com/rs/eve-auth-jwt
https://github.com/petrjasek/eve-elastic
https://github.com/ateliedocodigo/eve-healthcheck
https://github.com/tsileo/eve-mocker
https://github.com/hellerstanislav/eve-mongoengine
https://github.com/Abraxas-Biosystems/eve-neo4j
https://github.com/pyeve/eve-oauth2
https://github.com/pyeve/flask-sentinel
https://github.com/RedTurtle/eve-sqlalchemy


Eve Documentation, Release 2.1.0

• Eve-Swagger

• Eve.NET

• EveGenie

• REST Layer for Golang

2.12.1 Eve-Auth-JWT

by Olivier Poitrey

Eve-Auth-JWT is An OAuth 2 JWT token validation module for Eve.

2.12.2 Eve-Elastic

by Petr Jašek

Eve-Elastic is an elasticsearch data layer for the Eve REST framework. Features facets support and the generation of
mapping for schema.

2.12.3 Eve-Healthcheck

by LuisComS

Eve-Healthcheck is project that servers healthcheck urls used to monitor your Eve application.

2.12.4 Eve-Mocker

by Thomas Sileo

Eve-Mocker is a mocking tool for Eve powered REST APIs, based on the excellent HTTPretty, aimed to be used in
your unit tests, when you rely on an Eve API. Eve-Mocker has been featured on the Eve blog: Mocking tool for Eve
APIs

2.12.5 Eve-Mongoengine

by Stanislav Heller

Eve-Mongoengine is an Eve extension, which enables Mongoengine ORM models to be used as eve schema. If you
use mongoengine in your application and simultaneously want to use Eve, instead of writing schema again in Cerberus
format (DRY!), you can use this extension, which takes your mongoengine models and auto-transforms them into
Cerberus schema under the hood.

2.12. Extensions 101

https://github.com/pyeve/eve-swagger
https://github.com/pyeve/Eve.NET
https://github.com/DavidZisky/evegenie
https://github.com/rs/eve-auth-jwt
https://github.com/petrjasek/eve-elastic
https://github.com/ateliedocodigo/eve-healthcheck
https://github.com/tsileo/eve-mocker
http://blog.python-eve.org/eve-mocker
http://blog.python-eve.org/eve-mocker
https://github.com/hellerstanislav/eve-mongoengine


Eve Documentation, Release 2.1.0

2.12.6 Eve-Neo4j

by Abraxas Biosystems

Eve-Neo4j is an Eve extension aiming to enable it’s users to build and deploy highly customizable, fully featured
RESTful Web Services using Neo4j as backend. Powered by Eve, Py2neo, flask-neo4j and good intentions.

2.12.7 Eve-OAuth2

by Nicola Iarocci

Eve-OAuth2 is not an extension per-se, but rather an example of how you can leverage Flask-Sentinel to protect your
API endpoints with OAuth2.

2.12.8 Eve-SQLAlchemy

by Andrew Mleczko et al.

Powered by Eve, SQLAlchemy and good intentions Eve-SQLALchemy allows to effortlessly build and deploy highly
customizable, fully featured RESTful Web Services with SQL-based backends.

2.12.9 Eve-Swagger

by Nicola Iarocci

Eve-Swagger is a swagger.io extension for Eve. With a Swagger-enabled API, you get interactive documentation, client
SDK generation and discoverability. From Swagger website:

Swagger is a simple yet powerful representation of your RESTful API. With the largest ecosystem of API
tooling on the planet, thousands of developers are supporting Swagger in almost every modern program-
ming language and deployment environment. With a Swagger-enabled API, you get interactive documen-
tation, client SDK generation and discoverability.

For more information, see also the Meet Eve-Swagger article.

2.12.10 Eve.NET

by Nicola Iarocci

Eve.NET is a simple HTTP and REST client for Web Services powered by the Eve Framework. It leverages both
System.Net.HttpClient and Json.NET to provide the best possible Eve experience on the .NET platform. Written
and maintained by the same author of the Eve Framework itself, Eve.NET is delivered as a portable library (PCL)
and runs seamlessly on .NET4, Mono, Xamarin.iOS, Xamarin.Android, Windows Phone 8 and Windows 8. We use
Eve.NET internally to power our iOS, Web and Windows applications.

102 Chapter 2. Funding Eve

https://github.com/Abraxas-Biosystems/eve-neo4j
https://github.com/pyeve/eve-oauth2
https://github.com/pyeve/flask-sentinel
https://github.com/RedTurtle/eve-sqlalchemy
https://github.com/pyeve/eve-swagger
http://nicolaiarocci.com/announcing-eve-swagger/
https://github.com/pyeve/Eve.NET


Eve Documentation, Release 2.1.0

2.12.11 EveGenie

by Erin Corson and Matt Tucker, maintained by David Zisky.

EveGenie is a tool for generating Eve schemas. It accepts a json document of one or more resources and provides you
with a starting schema definition.

2.12.12 REST Layer for Golang

If you are into Golang, you should also check REST Layer. Developed by Olivier Poitrey, a long time Eve contributor
and sustainer. REST Layer is

a REST API framework heavily inspired by the excellent Python Eve. It lets you automatically generate
a comprehensive, customizable, and secure REST API on top of any backend storage with no boiler plate
code. You can focus on your business logic now.

2.13 How to contribute

Contributions are welcome! Not familiar with the codebase yet? No problem! There are many ways to contribute to
open source projects: reporting bugs, helping with the documentation, spreading the word and of course, adding new
features and patches.

2.13.1 Support questions

Please, don’t use the issue tracker for this. Use one of the following resources for questions about your own code:

• Ask on Stack Overflow. Search with Google first using: site:stackoverflow.com eve {search term,
exception message, etc.}

• The mailing list is intended to be a low traffic resource for both developers/contributors and API maintainers
looking for help or requesting feedback.

• The IRC channel #python-eve on FreeNode.

2.13.2 Reporting issues

• Describe what you expected to happen.

• If possible, include a minimal, complete, and verifiable example to help us identify the issue. This also helps
check that the issue is not with your own code.

• Describe what actually happened. Include the full traceback if there was an exception.

• List your Python and Eve versions. If possible, check if this issue is already fixed in the repository.

2.13. How to contribute 103

https://github.com/DavidZisky/evegenie
https://github.com/rs/rest-layer
https://stackoverflow.com/questions/tagged/eve?sort=linked
https://groups.google.com/forum/#!forum/python-eve
https://stackoverflow.com/help/mcve


Eve Documentation, Release 2.1.0

2.13.3 Submitting patches

• Include tests if your patch is supposed to solve a bug, and explain clearly under which circumstances the bug
happens. Make sure the test fails without your patch.

• Enable and install pre-commit to ensure styleguides and codechecks are followed. CI will reject a change that
does not conform to the guidelines.

First time setup

• Download and install the latest version of git.

• Configure git with your username and email:

git config --global user.name 'your name'
git config --global user.email 'your email'

• Make sure you have a GitHub account.

• Fork Eve to your GitHub account by clicking the Fork button.

• Clone your GitHub fork locally:

git clone https://github.com/{username}/eve
cd eve

• Add the main repository as a remote to update later:

git remote add pyeve https://github.com/pyeve/eve
git fetch pyeve

• Create a virtualenv:

python3 -m venv env
. env/bin/activate
# or "env\Scripts\activate" on Windows

• Install Eve in editable mode with development dependencies:

pip install -e ".[dev]"

• Install pre-commit and then activate its hooks. pre-commit is a framework for managing and maintaining multi-
language pre-commit hooks. Eve uses pre-commit to ensure code-style and code formatting is the same:

$ pip install --user pre-commit
$ pre-commit install

Afterwards, pre-commit will run whenever you commit.

104 Chapter 2. Funding Eve

https://pre-commit.com/
https://git-scm.com/downloads
https://help.github.com/articles/setting-your-username-in-git/
https://help.github.com/articles/setting-your-email-in-git/
https://github.com/join
https://github.com/pyeve/eve/fork
https://help.github.com/articles/fork-a-repo/#step-2-create-a-local-clone-of-your-fork
https://pre-commit.com/


Eve Documentation, Release 2.1.0

Start coding

• Create a branch to identify the issue you would like to work on (e.g. fix_for_#1280)

• Using your favorite editor, make your changes, committing as you go.

• Follow PEP8.

• Include tests that cover any code changes you make. Make sure the test fails without your patch. Run the tests..

• Push your commits to GitHub and create a pull request.

• Celebrate

Running the tests

You should have Python 3.7+ available in your system. Now running tests is as simple as issuing this command:

$ tox -e linting,py37,py38

This command will run tests via the “tox” tool against Python 3.7 and 3.8 and also perform “lint” coding-style checks.

You can pass different options to tox. For example, to run tests on Python 3.10 and pass options to pytest (e.g. enter
pdb on failure) to pytest you can do:

$ tox -e py310 -- --pdb

Or to only run tests in a particular test module on Python 3.6:

$ tox -e py310 -- -k TestGet

CI will run the full suite when you submit your pull request. The full test suite takes a long time to run because it tests
multiple combinations of Python and dependencies. You need to have Python 3.7, 3.8, 3.9, 3.10 and PyPy installed to
run all of the environments. Then run:

tox

Please note that you need an active MongoDB instance running on localhost in order for the tests run. Save yourself
some time and headache by creating a MongoDB user with the password defined in the test_settings.py file in the admin
database (the pre-commit process is unforgiving if you don’t want to commit your admin credentials but still have the
file modified, which would be necessary for tox). If you want to run a local MongoDB instance along with an SSH
tunnel to a remote instance, if you can, have the local use the default port and the remote use some other port. If you
can’t, fixing the tests that won’t play nicely is probably more trouble than connecting to the remote and local instances
one at a time. Also, be advised that in order to execute the Rate Limiting tests you need a running Redis server. The
Rate-Limiting tests are silently skipped if any of the two conditions are not met.

Building the docs

Build the docs in the docs directory using Sphinx:

cd docs
make html

Open _build/html/index.html in your browser to view the docs.

Read more about Sphinx.

2.13. How to contribute 105

http://dont-be-afraid-to-commit.readthedocs.io/en/latest/git/commandlinegit.html#commit-your-changes
https://pep8.org/
https://help.github.com/articles/creating-a-pull-request/
https://redis.io
http://www.sphinx-doc.org


Eve Documentation, Release 2.1.0

make targets

Eve provides a Makefile with various shortcuts. They will ensure that all dependencies are installed.

• make test runs the basic test suite with pytest

• make test-all runs the full test suite with tox

• make docs builds the HTML documentation

• make check performs some checks on the package

• make install-dev install Eve in editable mode with all development dependencies.

2.13.4 First time contributor?

It’s alright. We’ve all been there. See next chapter.

2.13.5 Don’t know where to start?

There are usually several TODO comments scattered around the codebase, maybe check them out and see if you have
ideas, or can help with them. Also, check the open issues in case there’s something that sparks your interest. And what
about documentation? I suck at English, so if you’re fluent with it (or notice any typo and/or mistake), why not help
with that? In any case, other than GitHub help pages, you might want to check this excellent Effective Guide to Pull
Requests

2.14 Support

Please keep in mind that the issues on GitHub are reserved for bugs and feature requests. If you have general or usage
questions about Eve, there are several options:

2.14.1 Stack Overflow

Stack Overflow has a eve tag. It is generally followed by Eve developers and users.

2.14.2 Mailing List

The mailing list is intended to be a low traffic resource for both developers/contributors and API maintainers looking
for help or requesting feedback.

2.14.3 IRC

There is an official Freenode channel for Eve at #python-eve.

106 Chapter 2. Funding Eve

https://github.com/pyeve/eve/issues
https://help.github.com/
http://codeinthehole.com/writing/pull-requests-and-other-good-practices-for-teams-using-github/
http://codeinthehole.com/writing/pull-requests-and-other-good-practices-for-teams-using-github/
https://stackoverflow.com/questions/tagged/eve
https://groups.google.com/forum/#!forum/python-eve
irc://irc.freenode.net/python-eve


Eve Documentation, Release 2.1.0

2.14.4 File an Issue

If you notice some unexpected behavior in Eve, or want to see support for a new feature, file an issue on GitHub.

2.15 Updates

If you’d like to stay up to date on the community and development of Eve, there are several options:

2.15.1 Blog

Eve News is the official blog of the Eve project.

2.15.2 Twitter

I often tweet about new features and releases of Eve. Follow @nicolaiarocci.

2.15.3 Mailing List

The mailing list is intended to be a low traffic resource for both developers/contributors and API maintainers looking
for help or requesting feedback.

2.15.4 GitHub

Of course the best way to track the development of Eve is through the GitHub repo.

2.16 Authors

Eve is written and maintained by Nicola Iarocci and various contributors:

2.16.1 Development Lead

• Nicola Iarocci <eve@nicolaiarocci.com>

2.16.2 Patches and Contributions

• Aayush Sarva

• Adam Walsh

• Adrian Cin

• Alberto Marin

• Alex Misk

• Alexander Dietmüller

• Alexander Hendorf

2.15. Updates 107

https://github.com/pyeve/eve/issues
http://blog.python-eve.org
https://twitter.com/nicolaiarocci
https://groups.google.com/forum/#!forum/python-eve
https://github.com/pyeve/eve
mailto:eve@nicolaiarocci.com


Eve Documentation, Release 2.1.0

• Alexander Miskaryan

• Amedeo Bussi

• Andreas Røssland

• Andrés Martano

• Antonio Lourenco

• Arnau Orriols

• Artem Kolesnikov

• Arthur Burkart

• Ashley Roach

• Ben Demaree

• Bjorn Andersson

• Brad P. Crochet

• Brian Mego

• Bryan Cattle

• Carl George

• Carles Bruguera

• Chen Rotem

• Christian Henke

• Christoph Witzany

• Christopher Larsen

• Chuck Turco

• Conrad Burchert

• Cyprien Pannier

• Cyril Bonnard

• DHuan

• Daniel Lytkin

• Daniele Pizzolli

• Danse

• David Arnold

• David Booss

• David Buchmann

• David Murphy

• David Wood

• Dmitry Anoshin

• Dominik Kellner

• Dong Wei Ming

108 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• Dougal Matthews

• Einar Huseby

• Elias García

• Emmanuel Leblond

• Eugene Prikazchikov

• Ewan Higgs

• Felix Peppert

• Florian Rathgeber

• Fouad Chennou

• Francisco Corrales Morales

• Garrin Kimmell

• George Lestaris

• Gianfranco Palumbo

• Gino Zhang

• Giorgos Margaritis

• Gonéri Le Bouder

• Grisha K.

• Guillaume Royer

• Gustavo Vargas

• Hamdy

• Hannes Tiede

• Harro van der Klauw

• Hasan Pekdemir

• Henrique Barroso

• Huan Di

• Hugo Larcher

• Hung Le

• James Stewart

• Jaroslav Semančík

• Javier Gonel

• Javier Jiménez

• Jean Boussier

• Jeff Zhang

• Jen Montes

• Jeremy Solbrig

• Joakim Uddholm

2.16. Authors 109



Eve Documentation, Release 2.1.0

• Johan Bloemberg

• John Chang

• John Deng

• Jorge Morales

• Jorge Puente Sarrín

• Joseph Heck

• Josh Villbrandt

• Juan Madurga

• Julian Hille

• Julien Barbot

• Junior Vidotti

• Kai Danielmeier

• Kelly Caylor

• Ken Carpenter

• Kevin Bowrin

• Kevin Funk

• Kevin Roy

• Kracekumar

• Kris Lambrechts

• Kurt Bonne

• Kurt Doherty

• Luca Di Gaspero

• Luca Moretto

• Luis Fernando Gomes

• Magdas Adrian

• Mamurjon Saitbaev

• Mandar Vaze

• Manquer

• Marc Abramowitz

• Marcelo Trylesinski

• Marcin Puhacz

• Marcus Cobden

• Marica Odagaki

• Mario Kralj

• Mark Mayo

• Marsch Huynh

110 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• Martin Fous

• Massimo Scamarcia

• Mateusz Łoskot

• Matt Creenan

• Matt Tucker

• Matthew Ellison

• Matthieu Prat

• Mattias Lundberg

• Mayur Dhamanwala

• Michael Maxwell

• Mikael Berg

• Miroslav Šedivý

• Moritz Schneider

• Mugur Rus

• Nathan Reynolds

• Niall Donegan

• Nick Park

• Nicolas Bazire

• Nicolas Carlier

• Oleg Pshenichniy

• Olivier Carrère

• Olivier Poitrey

• Olof Johansson

• Ondrej Slinták

• Or Neeman

• Orange Tsai

• Pahaz Blinov

• Patricia Ramos

• Patrick Decat

• Pau Freixes

• Paul Doucet

• Pedro Rodrigues

• Peter Darrow

• Petr Jašek

• Phone Myint Kyaw

• Pieter De Clercq

2.16. Authors 111



Eve Documentation, Release 2.1.0

• Prajjwal Nijhara

• Prayag Verma

• Qiang Zhang

• Raghuram Devarakonda

• Rahul Salgare

• Ralph Smith

• Raychee

• Robert Wlodarczyk

• Roberto ‘Kalamun’ Pasini

• Rodrigo Rodriguez

• Roller Angel

• Roman Gavrilov

• Ronan Delacroix

• Roy Smith

• Ryan Shea

• Sam Luu

• Samuel Sutch

• Samuli Tuomola

• Saurabh Shandilya

• Sebastien Estienne

• Sebastián Magrí

• Serge Kir

• Shaoyu Meng

• Simon Schönfeld

• Sobolev Nikita

• Stanislav Filin

• Stanislav Heller

• Stefaan Ghysels

• Stratos Gerakakis

• Sybren A. Stüvel

• Tadej Magajn

• Tano Abeleyra

• Taylor Brown

• Thomas Sileo

• Tim Gates

• Tim Jacobi

112 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• Tomasz Jezierski

• Tyler Kennedy

• Valerie Coffman

• Vasilis Lolis

• Vincent Bisserie

• Wael M. Nasreddine

• Wan Bachtiar

• Wei Guan

• Wytamma Wirth

• Xavi Cubillas

• boosh

• dccrazyboy

• kinuax

• kreynen

• mmizotin

• quentinpraz

• smeng9

• tgm

• xgdgsc

2.17 Licensing

Also see Authors.

2.17.1 BSD License

Copyright (c) 2019 by Nicola Iarocci and contributors. See AUTHORS for more details.

Some rights reserved.

Redistribution and use in source and binary forms of the software as well as documentation, with or without modifica-
tion, are permitted provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

• The names of the contributors may not be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

2.17. Licensing 113



Eve Documentation, Release 2.1.0

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE AND DOCUMENTATION,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2.17.2 Artwork License

Eve artwork 2013 by Roberto Pasini “Kalamun” released under the Creative Commons BY-SA license.

2.18 Changelog

Here you can see the full list of changes between each Eve release.

2.18.1 In Development

• hic sunt leones

2.18.2 Version v2.1.0

Released on Mar 14, 2023.

New

• Ability to customize the pagination limit on a per-resource basis (#1498)

Fixed

• fix: Flask 2.2+ support (#1497)

• fix: CI test runs fail with mongo: command not found on Ubuntu 22.04 (#1499)

2.18.3 Version v2.0.4

Released on Nov 10, 2022.

114 Chapter 2. Funding Eve

https://github.com/pyeve/eve/blob/master/artwork/LICENSE
https://github.com/pyeve/eve/issues/1498
https://github.com/pyeve/eve/issues/1497
https://github.com/pyeve/eve/issues/1499


Eve Documentation, Release 2.1.0

Fixed

• Comparison of incompatible types (#1492)

• Python 3 updates, and some refactoring (#1493)

2.18.4 Version v2.0.3

Released on Nov 2, 2022.

Fixed

• Malformed LAST_UPDATED field (#1490)

2.18.5 Version v2.0.2

Released on Sep 23, 2022.

Fixed

• Fix: etag generation fails if uuidRepresentation is not set in MONGO_OPTIONS (#1486)

2.18.6 Version v2.0.1

Released on Sep 7, 2022.

Fixed

• MONGO_URI username, password, and authSource are not parsed correctly (#1478)

• Lock Flask dependency to version 2.1 (#1485)

• Fix documentation typos (#1481)

• Only build Python 3 wheels.

2.18.7 Version v2.0

Released on Jun 8, 2022.

Breaking

Starting from this release, Eve supports Python 3.7 and above.

• Drop Python 2 (#1440)

• Drop Python 3.5 (#1440, #1438)

• Drop Python 3.6 (#1440)

2.18. Changelog 115

https://github.com/pyeve/eve/issues/1492
https://github.com/pyeve/eve/pull/1493
https://github.com/pyeve/eve/issues/1490
https://github.com/pyeve/eve/issues/1486
https://github.com/pyeve/eve/issues/1478
https://github.com/pyeve/eve/issues/1485
https://github.com/pyeve/eve/pull/1481
https://github.com/pyeve/eve/issues/1440
https://github.com/pyeve/eve/issues/1440
https://github.com/pyeve/eve/pull/1438
https://github.com/pyeve/eve/issues/1440


Eve Documentation, Release 2.1.0

New

• Add Python 3.9 support (#1437)

• Add Python 3.10 support (#1440)

• MONGO_OPTIONS acquires a new uuidRepresentation setting, with standard as its default value. This is
needed by PyMongo 4+ in order to seamlessly process eventual uuid values. See PyMongo documentation for
details (#1461, #1464).

Fixed

• AttributeError: module ‘werkzeug.utils’ has no attribute ‘escape’ (#1474)

• Starting with Werkzeug 2.1, HATEOAS links are relative instead of absolute (#1475)

• Eve doesn’t work with latest PyMongo (v4) (#1461, #1464)

• Fix 500 error with empty token/bearer (#1456)

• Do not return related fields if field is a empty list (#1441)

• PyMongo 3.12+ supports keys that include dotted fields (#1466)

• Pin pymongo version in dependencies (#1461)

• Prepare for Python 3 switch (#1445)

• Update docs and tests regarding pagination of empty resources (#1463)

• Fix fork link in contributing info (#1447)

• Tutorial mistake on custom IDs values with UUIDs (#1451)

• Documentation typos (#1462, #1469)

• Switch to GitHub Actions from Travis CI (#1439, #1444)

2.18.8 Version 1.1.5

Released on January 25, 2021.

Fixed

• Nested unique field validation still don’t work (#1435)

• Documentation: corrected variable name (#1426)

• Versioning: support for dynamic datasources (#1423)

• Disable MD5 support in GridFS, as it is deprecated (#1410)

• Demo application has been terminated by Heroku. Dropped any reference to it.

116 Chapter 2. Funding Eve

https://github.com/pyeve/eve/pull/1437
https://github.com/pyeve/eve/issues/1440
https://github.com/pyeve/eve/pull/1438
https://github.com/pyeve/eve/issues/1461
https://github.com/pyeve/eve/issues/1464
https://github.com/pyeve/eve/issues/1474
https://github.com/pyeve/eve/issues/1475
https://github.com/pyeve/eve/issues/1461
https://github.com/pyeve/eve/issues/1464
https://github.com/pyeve/eve/pull/1456
https://github.com/pyeve/eve/pull/1441
https://github.com/pyeve/eve/issues/1466
https://github.com/pyeve/eve/issues/1461
https://github.com/pyeve/eve/pull/1445
https://github.com/pyeve/eve/pull/1463
https://github.com/pyeve/eve/pull/1447
https://github.com/pyeve/eve/issues/1451
https://github.com/pyeve/eve/pull/1462
https://github.com/pyeve/eve/pull/1469
https://github.com/pyeve/eve/pull/1439
https://github.com/pyeve/eve/pull/1444
https://github.com/pyeve/eve/issues/1435
https://github.com/pyeve/eve/pull/1426
https://github.com/pyeve/eve/issues/1423
https://github.com/pyeve/eve/issues/1410


Eve Documentation, Release 2.1.0

2.18.9 Version 1.1.4

Released on October 22, 2020.

Fixed

• Error raised when using embedded with nested dict (#1416)

• Expose media endpoint only if RETURN_MEDIA_AS_URL is set to True (#1415)

• Use **mongo_options in with_options (#1413)

2.18.10 Version 1.1.3

Released on September 19, 2020.

Fixed

• Fix: Race condition in PATCH on newly created documents with clustered mongo (#1411)

2.18.11 Version 1.1.2

Released on July 9, 2020.

Fixed

• Add missed condition when projection is disabled per domain (#1398)

• Removed unnecessary comprehension (#1391)

2.18.12 Version 1.1.1

Released on May 10, 2020.

Fixed

• Disabling merge_nested_documents breaks versioning on PATCH (#1389)

• Tests failing with Flask 1.1.2 (#1378)

• BANDWIDTH_SAVER no longer works with resolve_resource_projection (#1338)

• unique_within_resource rule used in resources without datasource filter (#1368)

• dicts without schema rule are broken since b8d8fcd (#1366)

• 403 Forrbidden added to STANDARD_ERRORS (#1362)

• unique constraint doesn’t work when inside of a dict or a list (#1360)

• Documentation typos (#1375)

2.18. Changelog 117

https://github.com/pyeve/eve/issues/1416
https://github.com/pyeve/eve/pull/1415
https://github.com/pyeve/eve/issues/1413
https://github.com/pyeve/eve/issues/1411
https://github.com/pyeve/eve/pull/1398
https://github.com/pyeve/eve/pull/1391
https://github.com/pyeve/eve/issues/1389
https://github.com/pyeve/eve/pull/1378
https://github.com/pyeve/eve/issues/1338
https://github.com/pyeve/eve/pull/1368
https://github.com/pyeve/eve/pull/1366
https://github.com/pyeve/eve/pull/1362
https://github.com/pyeve/eve/issues/1360
https://github.com/pyeve/eve/pull/1375


Eve Documentation, Release 2.1.0

2.18.13 Version 1.1

Released on February 7, 2020.

New

• MONGO_QUERY_WHITELIST and mongo_query_whitelist. A list of extra Mongo query operators to allow
besides the official list of allowed operators. Defaults to []. (#1351)

Fixed

• Starup crash with Werkzeug 1.0 (#1359)

• $eq is missing from supported query operators (#1351)

• Documentation typos (#1348, #1350)

2.18.14 Version 1.0.1

Released on January 26, 2020.

• Fix: Mixing foreign and local object ids breaks querying (#1345)

2.18.15 Version 1.0

Released on December 19, 2019.

New

• Python 3.8 added to CI matrix (#1326)

• Drop support for Python 3.4 (#1297)

• unique_within_resource validation rule. Enforces the uniqueness of an attribute only at API resource level,
contrasting with the unique rule that enforces uniqueness at database collection level (#1291)

• Add doc8 to dev-requirements (#1343)

Fixed

• Pin to Cerberus < 2.0 (#1342)

• 500 error when PATCH or PUT are performed on Mongo 4.2 and _id is included with payload (#1341)

• Minor style improvements and 2 test fixes (#1330)

• Werkzeug 0.15.4 crashes with Python 3.8 (#1325)

• Curl request in projection examples do not work (#1298)

• Update installation instructions (#1303)

• (breaking) Delete on empty resource returns 404, should return 204 (#1299)

• MONGO_REPLICA_SET ignored (#1302)

118 Chapter 2. Funding Eve

https://github.com/pyeve/eve/issues/1351
https://github.com/pyeve/eve/issues/1359
https://github.com/pyeve/eve/issues/1351
https://github.com/pyeve/eve/issues/1348
https://github.com/pyeve/eve/pull/1350
https://github.com/pyeve/eve/issues/1345
https://github.com/pyeve/eve/issues/1326
https://github.com/pyeve/eve/issues/1297
https://github.com/pyeve/eve/issues/1291
https://github.com/pyeve/eve/issues/1343
https://github.com/pyeve/eve/issues/1342
https://github.com/pyeve/eve/issues/1341
https://github.com/pyeve/eve/pull/1330
https://github.com/pyeve/eve/pull/1325
https://github.com/pyeve/eve/issues/1298
https://github.com/pyeve/eve/pull/1303
https://github.com/pyeve/eve/issues/1299
https://github.com/pyeve/eve/issues/1302


Eve Documentation, Release 2.1.0

• Documentation typo (#1293, #1315, #1322, #1324, #1327)

• Flask 1.1.1 breaks test_logging_info test (#1296)

• Display the full release number on Eve frontpage.

• Update link to EveGenie repository. New maintainer: David Zisky.

2.18.16 Version 0.9.2

Released on June 14, 2019.

Fixed

• Geo queries lack support for the $minDistance mongo operator (#1281)

• Lookup argument does not get passed to pre_<event> hook with certain resource urls (#1283)

• PUT requests doesn’t set default values for fields that have one defined (#1280)

• PATCH crashes when normalizing default fields (#1275, #1274)

• The condition that avoids returning X-Total-Count when counting is disabled also filters out the case where
the resource is empty and count is 0 (#1279)

• First example of Eve use doesn’t really work (#1277)

2.18.17 Version 0.9.1

Released on May 22, 2019.

New

• NORMALIZE_ON_PATCH switches normalization on patch requests (#1234)

Fixed

• Document count broken with concurrent requests (#1271)

• Document count broken when embedded resources are requested (#1268)

• If ignore_fields contains a nested field, document is mutated (#1266)

• Crash with Werzeug >= 0.15.3 (#1267)

• Fix crash when trying to ignore a nested field that doesn’t exist (#1263)

2.18. Changelog 119

https://github.com/pyeve/eve/issues/1293
https://github.com/pyeve/eve/pull/1315
https://github.com/pyeve/eve/pull/1322
https://github.com/pyeve/eve/pull/1324
https://github.com/pyeve/eve/pull/1327
https://github.com/pyeve/eve/issues/1296
https://github.com/pyeve/eve/issues/1281
https://github.com/pyeve/eve/issues/1283
https://github.com/pyeve/eve/issues/1280
https://github.com/pyeve/eve/issues/1275
https://github.com/pyeve/eve/issues/1274
https://github.com/pyeve/eve/issues/1279
https://github.com/pyeve/eve/issues/1277
https://github.com/pyeve/eve/issues/1234
https://github.com/pyeve/eve/issues/1271
https://github.com/pyeve/eve/issues/1268
https://github.com/pyeve/eve/pull/1266
https://github.com/pyeve/eve/issues/1267
https://github.com/pyeve/eve/pull/1263


Eve Documentation, Release 2.1.0

Improved

• Remove unsupported transparent_schema_rules option from docs (#1264)

• Bump (and pin) Wekzeug to 0.15.4 (#1267)

• Quickstart: a better MONGO_AUTH_SOURCE explanation (#1168)

Breaking Changes

No known breaking changes for the standard framework user. However, if you are consuming the developer API:

• Be aware that io.base.DataLayer.find() signature has changed and an optional perform_count argument
has been added. The method return value is now a tuple (cursor, count); cursor is the query result as
before while count is the document count, which is expected to have a consistent value when perform_count
= True.

2.18.18 Version 0.9

Released on April 11, 2019.

Breaking changes

• Werkzeug v0.15.1+ is required. You want to upgrade, otherwise your Eve environment is likely to break. For
the full story, see #1245 and #1251.

New

• HATEOAS support added to aggregation results (#1208)

• on_fetched_diffs event hooks (#1224)

• Support for Mongo 3.6+ $expr query operator.

• Support for Mongo 3.6+ $center query operator.

Fixed

• Insertion failure when replacing unknown field with dbref value (#1255, #1257)

• max_results=1 should be honored on aggregation endpoints (#1250)

• PATCH incorrectly normalizes default values in subdocuments (#1234)

• Unauthorized Exception not working with Werkzeug >= 15.0 (#1245, #1251)

• Embedded documents not being sorted correctly (#1217)

• Eve crashes on malformed sort parameters (#1248)

• Insertion failure when replacing a same document containing dbref (#1216)

• Datasource projection is not respected for POST requests (#1189)

• Soft delete removes auth_field from document (#1188)

• On Mongo 3.6+, we don’t return 400 ‘immutable field’ on PATCH and PUT (#1243)

120 Chapter 2. Funding Eve

https://github.com/pyeve/eve/issues/1264
https://github.com/pyeve/eve/issues/1267
https://github.com/pyeve/eve/issues/1168
https://github.com/pyeve/eve/pull/1245
https://github.com/pyeve/eve/pull/1251
https://github.com/pyeve/eve/issues/1208
https://github.com/pyeve/eve/pull/1224
https://github.com/pyeve/eve/issues/1255
https://github.com/pyeve/eve/issues/1257
https://github.com/pyeve/eve/issues/1250
https://github.com/pyeve/eve/issues/1234
https://github.com/pyeve/eve/pull/1245
https://github.com/pyeve/eve/pull/1251
https://github.com/pyeve/eve/pull/1217
https://github.com/pyeve/eve/issues/1248
https://github.com/pyeve/eve/issues/1216
https://github.com/pyeve/eve/issues/1189
https://github.com/pyeve/eve/issues/1188
https://github.com/pyeve/eve/issues/1243


Eve Documentation, Release 2.1.0

• Expecting JSON response for rate limit exceeded scenario (#1227)

• Multiple concurrent patches to the same record, from different processes, should result in at least one patch
failing with a 412 error (Precondition Failed) (#1231)

• Embedding only does not follow data_relation.field (#1069)

• HATEOAS _links seems to get an extra &version=diffs (#1228)

• Do not alter ETag when performing an oplog_push (#1206)

• CORS response headers missing for media endpoint (#1197)

• Warning: Unexpected keys present on black: python_version (#1244)

• UserWarning: JSON setting is deprecated. Use RENDERERS instead (#1241).

• DeprecationWarning: decodestring is deprecated, use decodebytes (#1242)

• DeprecationWarning: count is deprecated. Use Collection.count_documents instead (#1202)

• Documentation typos (#1218, #1240)

Improved

• Eve package is now distributed as a Python wheel (#1260)

• Bump Werkzeug version to v0.15.1+ (#1245, #1251)

• Bump PyMongo version to v3.7+ (#1202)

• Python 3.7 added to the CI matrix (#1199)

• Option to omit the aggregation stage when its parameter is empty/unset (#1209)

• HATEOAS: now the _links dictionary may have a related dictionary inside, and each key-value pair yields
the related links for a data relation field (#1204)

• XML renderer now supports data field tag attributes such as href and title (#1204)

• Make the parsing of req.sort and req.where easily reusable by moving their logic to dedicated methods
(#1194)

• Add a “Python 3 is highly preferred” note on the homepage (#1198)

• Drop sphinx-contrib-embedly when building docs.

2.18.19 Version 0.8.1

Released on October 4, 2018.

New

• Add support for Mongo $centerSphere query operator (#1181)

• NORMALIZE_DOTTED_FIELDS. If True, dotted fields are parsed and processed as subdocument fields. If False,
dotted fields are left unparsed and unprocessed and the payload is passed to the underlying data-layer as-is. Please
note that with the default Mongo layer, setting this to False will result in an error. Defaults to True. (#1173)

• normalize_dotted_fields. Endpoint-level override for NORMALIZE_DOTTED_FIELDS. (#1173)

2.18. Changelog 121

https://github.com/pyeve/eve/issues/1227
https://github.com/pyeve/eve/issues/1231
https://github.com/pyeve/eve/issues/1069
https://github.com/pyeve/eve/pull/1228
https://github.com/pyeve/eve/issues/1206
https://github.com/pyeve/eve/issues/1197
https://github.com/pyeve/eve/issues/1244
https://github.com/pyeve/eve/issues/1241
https://github.com/pyeve/eve/issues/1242
https://github.com/pyeve/eve/issues/1202
https://github.com/pyeve/eve/pull/1218
https://github.com/pyeve/eve/issues/1240
https://github.com/pyeve/eve/issues/1260
https://github.com/pyeve/eve/pull/1245
https://github.com/pyeve/eve/pull/1251
https://github.com/pyeve/eve/issues/1202
https://github.com/pyeve/eve/issues/1199
https://github.com/pyeve/eve/issues/1209
https://github.com/pyeve/eve/pull/1204
https://github.com/pyeve/eve/pull/1204
https://github.com/pyeve/eve/pull/1194
https://github.com/pyeve/eve/issues/1198
https://github.com/pyeve/eve/issues/1181
https://github.com/pyeve/eve/issues/1173
https://github.com/pyeve/eve/issues/1173


Eve Documentation, Release 2.1.0

Fixed

• mongo_indexes: “OperationFailure” when changing the keys of an existing index (#1180)

• v0.8: “OperationFailure” performing MongoDB full text searches (#1176)

• “AttributeError” on Python 2.7 when obsolete JSON or XML settings are used (#1175).

• “TypeError argument of type ‘NoneType’ is not iterable” error when using document embedding in conjuction
with soft deletes (#1120)

• allow_unknown validation rule fails with nested dict fields (#1163)

• Updating a field with a nullable data relation fails when value is null (#1159)

• “cerberus.schema.SchemaError” when VALIDATE_FILTERS = True. (#1154)

• Serializers fails when array of types is in schema. (#1112)

• Replace the broken make audit shortcut with make check, add the command to CONTRIBUTING.rst it was
missing. (#1144)

Improved

• Perform lint checks and fixes on staged files, as a pre-commit hook. (#1157)

• On CI, perform linting checks first. If linting checks are successful, execute the test suite on the whole matrix.
(#1156)

• Reformat code to match Black code-style. (#1155)

• Use simplejson everywhere in the codebase. (#1148)

• Install a bot that flags and closes stale issues/pull requests. (#1145)

• Only set the package version in __init__.py. (#1142)

Docs

• Typos (#1183, #1184, #1185)

• Add MONGO_AUTH_SOURCE to Quickstart. (#1168)

• Fix Sphinx-embedly error when embedding speakerdeck.com slide deck (#1158)

• Fix broken link to the Postman app. (#1150)

• Update obsolete PyPI link in docs sidebar. (#1152)

• Only display the version number on the docs homepage. (#1151)

• Fix documentation builds on Read the Docs. (#1147)

• Add a ISSUE_TEMPLATE.md GitHub template file. (#1146)

• Improve changelog format to reduce noise and increase readability. (#1143)

122 Chapter 2. Funding Eve

https://github.com/pyeve/eve/issues/1180
https://github.com/pyeve/eve/issues/1176
https://github.com/pyeve/eve/issues/1175
https://github.com/pyeve/eve/issues/1120
https://github.com/pyeve/eve/issues/1163
https://github.com/pyeve/eve/issues/1159
https://github.com/pyeve/eve/issues/1154
https://github.com/pyeve/eve/issues/1112
https://github.com/pyeve/eve/issues/1144
https://github.com/pyeve/eve/issues/1157
https://github.com/pyeve/eve/issues/1156
https://github.com/pyeve/eve/issues/1155
https://github.com/pyeve/eve/issues/1148
https://github.com/pyeve/eve/issues/1145
https://github.com/pyeve/eve/issues/1142
https://github.com/pyeve/eve/pull/1183
https://github.com/pyeve/eve/pull/1184
https://github.com/pyeve/eve/pull/1185
https://github.com/pyeve/eve/issues/1168
https://github.com/pyeve/eve/issues/1158
https://github.com/pyeve/eve/issues/1150
https://github.com/pyeve/eve/issues/1152
https://github.com/pyeve/eve/issues/1151
https://github.com/pyeve/eve/issues/1147
https://github.com/pyeve/eve/issues/1146
https://github.com/pyeve/eve/issues/1143


Eve Documentation, Release 2.1.0

2.18.20 Version 0.8

Released on May 10, 2018.

Note: Make sure you read the Breaking Changes section below.

• New: support for partial media requests. Clients can request partial file downloads by adding a Range header to
their media request (#1050).

• New: Renderer classes. RENDERER allows to change enabled renderers. Defaults to ['eve.render.
JSONRenderer', 'eve.render.XMLRenderer']. You can create your own renderer by subclassing eve.
render.Renderer. Each renderer should set valid mime attr and have .render()method implemented. Please
note that at least one renderer must always be enabled (#1092).

• New: on_delete_resource_originals fired when soft deletion occurs (#1030).

• New: before_aggregation and after_aggregation event hooks allow to attach custom callbacks to aggre-
gation endpoints (#1057).

• New: JSON_REQUEST_CONTENT_TYPES or supported JSON content types. Useful when you need support for
vendor-specific json types. Please note: responses will still carry the standard application/json type. De-
faults to ['application/json'] (#1024).

• New: when the media endpoint is enabled, the default authentication class will be used to secure it. (#1083;
#1049).

• New: MERGE_NESTED_DOCUMENTS. If True, updates to nested fields are merged with the current data on PATCH.
If False, the updates overwrite the current data. Defaults to True (#1140).

• New: support for MongoDB decimal type bson.decimal128.Decimal128 (#1045).

• New: Support for Feature and FeatureCollection GeoJSON objects (#769).

• New: Add support for MongoDB $box geo query operator (#1122).

• New: ALLOW_CUSTOM_FIELDS_IN_GEOJSON allows custom fields in GeoJSON (#1004).

• New: Add support for MongoDB $caseSensitive and $diactricSensitive query operators (#1126).

• New: Add support for MongoDB bitwise query operators $bitsAllClear, $bitsAllSet, $bitsAnyClear,
$bitsAnySet (#1053).

• New: support for MONGO_AUTH_MECHANISM and MONGO_AUTH_MECHANISM_PROPERTIES.

• New: MONGO_DBNAME can now be used in conjuction with MONGO_URI. Previously, if MONGO_URI was missing
the database name, an exception would be rised (#1037).

• Fix: OPLOG skipped even if OPLOG = True (#1074).

• Fix: Cannot define default projection and request specific field. (#1036).

• Fix: VALIDATE_FILTERS and ALLOWED_FILTERS do not work with sub-document fields. (#1123).

• Fix: Aggregation query parameter does not replace keys in the lists (#1025).

• Fix: serialization bug that randomly skips fields if “x_of” is encountered (#1042)

• Fix: PUT behavior with User Restricted Resource Access. Ensure that, under every circumstance, users are
unable to overwrite items owned by other users (#1130).

• Fix: Crash with Cerberus 1.2 (#1137).

• Fix documentation typos (#1114, #1102)

2.18. Changelog 123

http://python-eve.org/features.html#partial-media-downloads
https://github.com/pyeve/eve/pull/1050
http://python-eve.org/features.html#rendering
https://github.com/pyeve/eve/pull/1092
https://github.com/pyeve/eve/pull/1030
http://python-eve.org/features.html#aggregation-event-hooks
http://python-eve.org/features.html#aggregation-event-hooks
https://github.com/pyeve/eve/issues/1057
https://github.com/pyeve/eve/issues/1024
https://github.com/pyeve/eve/issues/1083
https://github.com/pyeve/eve/issues/1049
https://github.com/pyeve/eve/pull/1140
https://github.com/pyeve/eve/issues/1045
https://github.com/pyeve/eve/issues/769
https://github.com/pyeve/eve/issues/1122
https://github.com/pyeve/eve/issues/1004
https://github.com/pyeve/eve/pull/1126
https://github.com/pyeve/eve/issues/1053
https://github.com/pyeve/eve/issues/1037
https://github.com/pyeve/eve/issues/1074
https://github.com/pyeve/eve/issues/1036
https://github.com/pyeve/eve/issues/1123
https://github.com/pyeve/eve/issues/1025
https://github.com/pyeve/eve/pull/1042
https://github.com/pyeve/eve/pull/1130
https://github.com/pyeve/eve/issues/1137
https://github.com/pyeve/eve/pull/1114
https://github.com/pyeve/eve/pull/1102


Eve Documentation, Release 2.1.0

• Fix: broken documentation links to Cerberus validation rules.

• Fix: add sphinxcontrib-embedly to dev-requirements.txt.

• Fix: Removed OrderedDict dependency; use OrderedDict from backport_collections instead (#1070).

• Performance improved on retrieving a list of embedded documents (#1029).

• Dev: Refactor index creation. We now have a new eve.io.mongo.ensure_mongo_indexes() function which
ensures that eventual mongo_indexes defined for a resource are created on the active database. The function can
be imported and invoked, for example in multi-db workflows where a db is activated based on the authenticated
user performing the request (via custom auth classes).

• Dev: Add a Makefile with shortcuts for testing, docs building, and development install.

• Dev: Switch to pytest as the standard testing tool.

• Dev: Drop requiments.txt and dev-requirements.txt. Use pip install -e .[dev|tests|docs]
instead.

• Tests: finally acknowledge the existence of modern APIs for both Mongo and Python (get rid of most deprecation
warnings).

• Change: Support for Cerberus 1.0+ (#776).

• Change: JSON and XML settings are deprecated and will be removed in a future update. Use RENDERERS instead
(#1092).

• Flask dependency set to >=1.0 (#1111).

• PyMongo dependency set to >=3.5.

• Events dependency set to >=v0.3.

• Drop Flask-PyMongo dependency, use custom code instead (#855).

• Docs: Comprehensive rewrite of the How to contribute page.

• Docs: Drop the testing page; merge its contents with How to contribute.

• Docs: Add link to the Eve course. It was authored by the project author, and it is hosted by TalkPython Training.

• Docs: code snippets are now Python 3 compatibile (Pahaz Blinov).

• Dev: Delete and cleanup of some unnecessary code.

• Dev: after the latest update (May 4th) travis-ci would not run tests on Python 2.6.

• Dev: all branches are now tested on travis-ci. Previously, only ‘master’ was being tested.

• Dev: fix insidious bug in tests.methods.post.TestPost class.

Breaking Changes

• Python 2.6 and Python 3.3 are no longer supported (#1129).

• Eve now relies on Cerberus 1.1+ (#776). It allows for many new powerful validation and trasformation features
(like schema registries), improved performance and, in general, a more streamlined API. It also brings some
notable breaking changes.

– keyschema was renamed to valueschema, and propertyschema to keyschema.

– A PATCH on a document which misses a field having a default value will now result in setting this value,
even if the field was not provided in the PATCH’s payload.

124 Chapter 2. Funding Eve

https://github.com/pyeve/eve/pull/1070
https://github.com/pyeve/eve/issues/1029
http://python-eve.org/contributing.html#make-targets
https://github.com/pyeve/eve/issues/776
https://github.com/pyeve/eve/pull/1092
https://github.com/pyeve/eve/issues/1111
https://github.com/pyeve/eve/issues/855
http://python-eve.org/contributing.html
http://python-eve.org/contributing.html
https://training.talkpython.fm/courses/explore_eve/eve-building-restful-mongodb-backed-apis-course
https://github.com/pyeve/eve/issues/1129
http://python-cerberus.org
https://github.com/pyeve/eve/issues/776
http://docs.python-cerberus.org/en/stable/schemas.html#registries


Eve Documentation, Release 2.1.0

– Error messages for keyschema are now returned as dictionary. Example: {'a_dict': {'a_field':
"value does not match regex '[a-z]+'"}}.

– Error messages for type validations are different now.

– It is no longer valid to have a field with default = None and nullable = False (see
patch.py:test_patch_nested_document_nullable_missing).

– And more. A complete list of breaking changes is available here. For detailed upgrade instructions, see
Cerberus upgrade notes. An in-depth analysis of changes made to the codebase (useful if you wrote a
custom validator which needs to be upgraded) is available with this commit message.

– Special thanks to Dominik Kellner and Brad P. Crochet for the amazing job done on this upgrade.

• Config setting MONGO_AUTHDBNAME renamed into MONGO_AUTH_SOURCE for naming consistency with PyMongo.

• Config options MONGO_MAX_POOL_SIZE, MONGO_SOCKET_TIMEOUT_MS, MONGO_CONNECT_TIMEOUT_MS,
MONGO_REPLICA_SET, MONGO_READ_PREFERENCE removed. Use MONGO_OPTIONS or MONGO_URI instead.

• Be aware that DELETE on sub-resource endpoint will now only delete the documents matching endpoint se-
mantics. A delete operation on people/51f63e0838345b6dcd7eabff/invoices will delete all documents
matching the followig query: {'contact_id': '51f63e0838345b6dcd7eabff'} (#1010).

Version 0.7.10

Released on July 15, 2018.

• Fix: Pin Flask-PyMongo dependency to avoid crash with Flask-PyMongo 2. Closes #1172.

Version 0.7.9

Released on May 10, 2018

• Python 2.6 and Python 3.3 are deprecated. Closes #1129.

Version 0.7.8

Released on 7 February, 2018

• Fix: breaking syntax error in v0.7.7

Version 0.7.7

Released on 7 February, 2018

• Fix: geo queries now properly support $geometry and $maxDistance operators. Closes #1103.

2.18. Changelog 125

http://docs.python-cerberus.org/en/stable/upgrading.html#data-types
http://docs.python-cerberus.org/en/stable/changelog.html#breaking-changes
http://python-cerberus.org/en/stable/upgrading.html
https://github.com/pyeve/eve/pull/1001/commits/1110f807b478efa9f13ad1d217d22ceaa2a9e42d
https://github.com/pyeve/eve/issues/1010


Eve Documentation, Release 2.1.0

Version 0.7.6

Released on 14 January, 2018

• Improve query parsing robustness.

Version 0.7.5

Released on 4 December, 2017

• Fix: A query was not fully traversed in the sanitization. Therefore the blacklist for mongo wueries could be
bypassed, allowing for dangerous $where queries (Moritz Schneider).

Version 0.7.4

Released on 24 May, 2017

• Fix: post_internal fails when using URL_PREFIX or API_VERSION. Closes #810.

Version 0.7.3

Released on 3 May, 2017

• Eve and Cerberus are now collaboratively funded projects, see: https://nicolaiarocci.com/
eve-and-cerberus-funding-campaign/

• Fix: Internal resource, oplog enabled: a *_internal method defined in OPLOG_METHODS triggers keyerror
(Einar Huseby).

• Dev: use official Alabaster theme instead of custom fork.

• Fix: docstrings typos (Martin Fous).

• Docs: explain that ALLOW_UNKNOWN can also be used to expose the whole document as found in the database,
with no explicit validation schema. Addresses #995.

• Docs: add Eve-Healthcheck to extensions list (Luis Fernando Gomes).

Version 0.7.2

Released on 6 March, 2017

• Fix: Validation exceptions are returned in doc_issues['validator exception'] across all edit methods
(POST, PUT, PATCH). Closes #994.

• Fix: When there is MONGO_URI defined it will be used no matter if the resource is using a prefix or not (Petr
Jašek).

• Docs: Add code snippet with an example of how to implement a simple list of items that supports both list-level
and item-level CRUD operations (John Chang).

126 Chapter 2. Funding Eve

https://nicolaiarocci.com/eve-and-cerberus-funding-campaign/
https://nicolaiarocci.com/eve-and-cerberus-funding-campaign/


Eve Documentation, Release 2.1.0

Version 0.7.1

Released on 14 February, 2017

• Fix: “Cannot create a consistent method resolution order” on Python 3.5.2 and 3.6 since Eve 0.7. Closes #984.

• Docs: update README with svg bade (Sobolev Nikita).

• Docs: fix typo and dead link to Nicola’s website (Dominik Kellner).

• develop branch has been dropped. master is now the default project branch.

Version 0.7

Released on 6 February, 2017

• New: Add Python 3.6 as a supported interpreter.

• New: OPTIMIZE_PAGINATION_FOR_SPEED. Set this to True to improve pagination performance. When opti-
mization is active no count operation, which can be slow on large collections, is performed on the database. This
does have a few consequences. Firstly, no document count is returned. Secondly, HATEOAS is less accurate: no
last page link is available, and next page link is always included, even on last page. On big collections, switch-
ing this feature on can greatly improve performance. Defaults to False (slower performance; document count
included; accurate HATEOAS). Closes #944 and #853.

• New: Location header is returned on 201 Created POST responses. If will contain the URI to the created
document. If bulk inserts are enabled, only the first document URI is returned. Closes #795.

• New: Pretty printing.You can pretty print the response by specifying a query parameter named ?pretty (Hasan
Pekdemir).

• New: AUTO_COLLAPSE_MULTI_KEYS. If set to True, multiple values sent with the same key, submitted using
the application/x-www-form-urlencoded or multipart/form-data content types, will automatically be
converted to a list of values. When using this together with AUTO_CREATE_LISTS it becomes possible to use
lists of media fields. Defaults to False. Closes #932 (Conrad Burchert).

• New: AUTO_CREATE_LISTS. When submitting a non list type value for a field with type list, automatically
create a one element list before running the validators. Defaults to False (Conrad Burchert).

• New: Flask-PyMongo compatibility for for MONGO_CONNECT config setting (Massimo Scamarcia).

• New: Add Python 3.5 as a supported interpreter (Mattias Lundberg).

• New: MONGO_OPTIONS allows MongoDB arguments to be passed to the MongoClient object. Defaults to {}
(Massimo Scamarcia).

• New: Regexes are allowed by setting X_DOMAINS_RE values. This allows CORS to support websites with dy-
namic ranges of subdomains. Closes #660 and #974.

• New: If ENFORCE_IF_MATCH option is active, then all requests are expected to include the If-Match or they
will be rejected (same as old behavior). However, if ENFORCE_IF_MATCH is disabled, then client determines
whether request is conditional. When If-Match is included, then request is conditional, otherwise the request
is processed with no conditional checks. Closes #657 (Arthur Burkart).

• New: Allow old document versions to be cache validated using ETags (Nick Park).

• New: Support weak ETags, commonly applied by servers transmitting gzipped content (Nick Park).

• New: on_oplog_push event is fired when OPLOG is about to be updated. Callbacks receive two arguments:
resource (resource name) and entries (list of oplog entries which are about to be written).

• New: optional extra field is available for OPLOG entries. Can be updated by callbacks hooked to the new
on_oplog_push event.

2.18. Changelog 127



Eve Documentation, Release 2.1.0

• New: OPLOG audit now include the username or token when available. Closes #846.

• New get_internal and getitem_internal functions can be used for internal GET calls. These methods are
not rate limited, authentication is not checked and pre-request events are not raised.

• New: Add support for MongoDB DBRef fields (Roman Gavrilov).

• New: MULTIPART_FORM_FIELDS_AS_JSON. In case you are submitting your resource as multipart/
form-data all form data fields will be submitted as strings, breaking any validation rules you might have on the
resource fields. If you want to treat all submitted form data as JSON strings you will have to activate this setting.
Closes #806 (Stratos Gerakakis).

• New: Support for MongoDB Aggregation Framework. Endpoints can respond with aggregation results. Clients
can optionally influence aggregation results by using the new aggregate option: aggregate={"$year":
2015}.

• New: Flask views (@app.route) can now set mongo_prefix via Flask’s g object: g.mongo_prefix =
'MONGO2' (Gustavo Vargas).

• New: Query parameters not recognised by Eve are now returned in HATEOAS URLs (Mugur Rus).

• New: OPLOG_CHANGE_METHODS is a list of HTTP methods which operations will include changes into the OpLog
(mmizotin).

• Change: Return 428 Precondition Required instead of a generic 403 Forbidden when the If-Match
request header is missing (Arnau Orriols).

• Change: ETag response header now conforms to RFC 7232/2.3 and is surrounded by double quotes. Closes
#794.

• Fix: Better locating of settings.py. On startup, if settings flag is omitted in constructor, Eve will try to locate
file named settings.py, first in the application folder and then in one of the application’s subfolders. You can
choose an alternative filename/path, just pass it as an argument when you instantiate the application. If the file
path is relative, Eve will try to locate it recursively in one of the folders in your sys.path, therefore you have to
be sure that your application root is appended to it. This is useful, for example, in testing environments, when
settings file is not necessarily located in the root of your application. Closes #820 (Mario Kralj).

• Fix: Versioning does not work with User Restricted Resource Access. Closes #967 (Kris Lambrechts)

• Fix: test_create_indexes() typo. Closes 960.

• Fix: fix crash when attempting to modify a document _id on MongoDB 3.4 (Giorgos Margaritis)

• Fix: improve serialization of boolean values. Closes #947 (NotSpecial).

• Fix: fix intermittently failing test. Closes #934 (Conrad Burchert).

• Fix: Multiple, fast (within a 1 second window) and neutral (no actual changes) PATCH requests should not raise
412 Precondition Failed. Closes #920.

• Fix: Resource titles are not properly escaped during the XML rendering of the root document (Kris Lambrechts).

• Fix: ETag request headers which conform to RFC 7232/2.3 (double quoted value) are now properly processed.
Addresses #794.

• Fix: Deprecation warning from Flask. Closes #898 (George Lestaris).

• Fix: add Support serialization on lists using anyof, oneof, allof, noneof. Closes #876 (Carles Bruguera).

• Fix: update security example snippets to match with current API (Stanislav Filin).

• Fix: notifications.py example snippet crashes due to lack of DOMAIN setting (Stanislav Filin).

• Docs: clarify documentation for custom validators: Cerberus dependency is still pinned to version 0.9.2. Upgrade
to Cerberus 1.0+ is planned with v0.8. Closes #796.

128 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• Docs: remove the deprecated --ditribute virtualenv option (Eugene Prikazchikov).

• Docs: add date and subdocument fields filtering examples. Closes #924.

• Docs: add Eve-Neo4j to the extensions page (Rodrigo Rodriguez).

• Docs: stress that alternate backends are supported via community extensions.

• Docs: clarify that Redis is an optional dependency (Mateusz Łoskot).

• Update license to 2017. Closes #955.

• Update: Flask 0.12. Closes #945, #904 and #963.

• Update: PyMongo 3.4 is now required. Closes #964.

Version 0.6.4

Released on 8 June, 2016

• Fix: Cannot serialize data when a field that has a valueschema that is of dict type. Closes #874.

• Fix: Authorization header bearer tokens not parsed correctly. Closes #866 (James Stewart).

• Fix: TokenAuth prevents base64 decoding of Tokens. Closes #840.

• Fix: If datasource source is specified no fields are included by default. Closes #842.

• Docs: streamline Quickstart guide. Closes #868.

• Docs: fix broken link in Installation page. Closes #861.

• Docs: Resource configuration doesn’t mention versioning override. Closes #845.

Version 0.6.3

Released on 16 March, 2016

• Fix: Since 0.6.2, static projections are not honoured. Closes #837.

Version 0.6.2

Released on 14 March, 2016

• Fix: Access-Control-Allow-Max-Age should actually be Access-Control-Max-Age. Closes #829.

• Fix: unique validation rule is checked against soft deleted documents. Closes #831.

• Fix: Mongo does not allow $ and . in field names. Apply this validation in schemas and dict fields. Closes #780.

• Fix: Remove “ensure uniqueness of (custom) id fields” feature. Addresses #788.

• Fix: 409 Conflict not reported since upgrading to PyMongo 3. Closes #680.

• Fix: when a document is soft deleted, the OPLOG _updated field is not the time of the deletion but the time of
the previous last update (Cyril Bonnard).

• Fix: TokenAuth. When the tokens are passed as “Authorization: “ or “Authorization: Token “ headers, werkzeug
does not recognize them as valid authorization header, therefore the request.authorization field is empty
(Luca Di Gaspero).

• Fix: SCHEMA_ENDPOINT does not work when schema has lambda function as coerce rule. Closes #790.

• Fix: CORS pre-flight requests malfunction on SCHEMA_ENDPOINT endpoint (Valerie Coffman).

2.18. Changelog 129



Eve Documentation, Release 2.1.0

• Fix: do not attempt to parse number values as strings when they are numerical (Nick Park).

• Fix: the __init__.py ITEM_URL does not match default_settings.py. Closes #786 (Ralph Smith).

• Fix: startup crash when both SOFT_DELETE and ALLOW_UNKNOWN are enabled. Closes #800.

• Fix: Serialize inside of and of_type rules new in Cerberus 0.9. Closes #692 (Arnau Orriols).

• Fix: In put_internal Validator is not set when skip_validation is true (Wei Guan).

• Fix: In patch_internal Validator is not set when skip_validation is true (Stratos Gerakakis).

• Fix: Add missing serializer for fields of type number (Arnau Orriols).

• Fix: Skip any null value from serialization (Arnau Orriols).

• Fix: When SOFT_DELETE is active an exclusive datasource.projection causes a 500 error. Closes #752.

• Update: PyMongo 3.2 is now required.

• Update: Flask-PyMongo 0.4+ is now required.

• Update: Werkzeug up to 0.11.4 is now required

• Change: simplejson v3.8.2 is now required.

• Docs: fix some typos (Manquer, Patrick Decat).

• Docs: add missing imports to authentication docs (Hamdy)

• Update license to 2016 (Prayag Verma)

Version 0.6.1

Released on 29 October, 2015

• New: BULK_ENABLED enables/disables bulk insert. Defaults to True (Julian Hille).

• New: VALIDATE_FILTERS enables/disables validating of query filters against resource schema. Closes #728
(Stratos Gerakakis).

• New: TRANSPARENT_SCHEMA_RULES enables/disables schema validation globally and
transparent_schema_rules per resource (Florian Rathgeber).

• New: ALLOW_OVERRIDE_HTTP_METHOD enables/disables support for overriding request methods with
X-HTTP-Method-Override headers (Julian Hille).

• Fix: flake8 fails on Python 3. Closes #747 (Simon Schönfeld).

• Fix: recursion for dotted field normalization (Matt Tucker).

• Fix: dependendencies on sub-document fields always return 422. Closes #706.

• Fix: invoking post_internal with skpi_validation = True causes a 422 response. Closes #726.

• Fix: explict inclusive datasource projection is ignored. Closes #722.

• Dev: fix rate limiting tests so they don’t occasionally fail.

• Dev: make sure connections opened by test suite are properly closed on teardown.

• Dev: use middleware to parse overrides and eventually update request method (Julian Hille).

• Dev: optimize versioning by building specific versions without deepcopying the root document (Nick Park).

• Dev: _client_projection method has been moved up from the mongo layer to the base DataLayer class. It
is now available for other data layers implementations, such as Eve-SQLAlchemy (Gonéri Le Bouder).

130 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• Docs: add instructions for installing dependencies and building docs (Florian Rathgeber).

• Docs: fix link to contributing guidelines (Florian Rathgeber).

• Docs: fix some typos (Stratos Gerakakis, Julian Hille).

• Docs: add Eve-Swagger to Extensions page.

• Docs: fix broken link to Mongo’s capped collections (Nathan Reynolds).

Version 0.6

Released on 28 September, 2015

• New: support for embedding simple ObjectId fields: you can now use the data_relation rule on them (Gonéri
Le Bouder).

• New: support for multiple layers of embedding (Gonéri Le Bouder).

• New: SCHEMA_ENDPOINT allows resource schema to be returned from an API endpoint (Nick Park).

• New: HATEOAS links can be customized from within callback functions (Magdas Adrian).

• New: _INFO: string value to include an info section, with the given INFO name, at the Eve homepage (suggested
value _info). The info section will include Eve server version and API version (API_VERSION, if set). None
otherwise, if you do not want to expose any server info. Defaults to None (Stratos Gerakakis).

• New: id_field sets a field used to uniquely identify resource items within the database. Locally overrides
ID_FIELD (Dominik Kellner).

• New: UPSERT_ON_PUT allows document creation on PUT if the document does not exist. Defaults to True. See
below for details.

• New: PUT attempts to create a document if it does not exist. The URL endpoint will be used as ID_FIELD value
(if ID_FIELD is included with the payload, it will be ignored). Normal validation rules apply. The response
will be a 201 Created on successful creation. Response payload will be identical the one you would get by
performing a single document POST to the resource endpoint. Set UPSET_ON_PUT to False to disable this
behaviour, and get a 404 instead. Closes #634.

• New: POST accepts documents which include ID_FIELD (_id) values. This is in addition to the old behaviour
of auto-generating ID_FIELD values when the submitted document does not contain it. Please note that, while
you can add ID_FIELD to the schema (previously not allowed), you don’t really have to, unless its type is different
from the ObjectId default. This means that in most cases you can start storing ID_FIELD-included documents
right away, without making any changes.

• New: Log MongoDB and HTTP methods exceptions (Sebastien Estienne).

• New: Enhanced Logging.

• New: VALIDATION_ERROR_AS_LIST. If True even single field errors will be returned in a list. By default single
field errors are returned as strings while multiple field errors are bundled in a list. If you want to standardize
the field errors output, set this setting to True and you will always get a list of field issues. Defaults to False.
Closes #536.

• New: STANDARD_ERRORS is a list of HTTP codes that will be served with the canonical API response format,
which includes a JSON body providing both error code and description. Addresses #586.

• New: anyof validation rule allows you to list multiple sets of rules to validate against.

• New: alloff validation rule, same as anyof except that all rule collections in the list must validate.

• New: noneof validation rule. Same as anyof except that it requires no rule collections in the list to validate.

• New: oneof validation rule. Same as anyof except that only one rule collections in the list can validate.

2.18. Changelog 131



Eve Documentation, Release 2.1.0

• New: valueschema validation rules replaces the now deprecated keyschema rule.

• New: propertyschema is the counterpart to valueschema that validates the keys of a dict.

• New: coerce validation rule. Type coercion allows you to apply a callable to a value before any other validators
run.

• New: MONGO_AUTHDBNAME allows to specify a MongoDB authorization database. Defaults to None (David
Wood).

• New: remove method in Mongo data layer now returns the deletion status or None if write acknowledgement is
disabled (Mayur Dhamanwala).

• New: unique_to_user validation rule allows to validate that a field value is unique to the user. Different users
can share the same value for the field. This is useful when User Restricted Resource Access is enabled on an
endpoint. If URRA is not active on the endpoint, this rule behaves like unique. Closes #646.

• New: MEDIA_BASE_URL allows to set a custom base URL to be used when RETURN_MEDIA_AS_URL is active
(Henrique Barroso).

• New: SOFT_DELETE enables soft deletes when set to True (Nick Park.)

• New: mongo_indexes allows for creation of MongoDB indexes at application launch (Pau Freixes.)

• New: clients can opt out of default embedded fields: ?embedded={"author":0} would cause the embedded
author not to be included with response payload. (Tobias Betz.)

• New: CORS: Support for X-ALLOW-CREDENTIALS (Cyprien Pannier.)

• New: Support for dot notation in POST, PATCH and PUT methods. Be aware that, for PATCH and PUT, if dot
notation is used even on just one field, the whole sub-document will be replaced. So if this document is stored:

{"name": "john", "location": {"city": "New York", "address": "address"}}

A PATCH like this:

{"location.city": "Boston"}

(which is exactly equivalent to:)

{"location": {"city": "a nested city"}}

Will update the document to:

{"name": "john", "location": {"city": "Boston"}}

• New: JSONP Support (Tim Jacobi.)

• New: Support for multiple MongoDB databases and/or servers.

– mongo_prefix resource setting allows overriding of the default MONGO prefix used when retrieving Mon-
goDB settings from configuration. For example, set a resource mongo_prefix to MONGO2 to read/write
from the database configured with that prefix in your settings file (MONGO2_HOST, MONGO2_DBNAME, etc.)

– set_mongo_prefix() and get_mongo_prefix() have been added to BasicAuth class and derivates.
These can be used to arbitrarily set the target database depending on the token/client performing the request.

Database connections are cached in order to not to loose performance. Also, this change only affects the Mon-
goDB engine, so extensions currently targetting other databases should not need updates (they will not inherit
this feature however.)

• New: Enable on_pre_GET hook for HEAD requests (Daniel Lytkin.).

• New: Add X-Total-Count header for collection GET/HEAD requests (Daniel Lytkin.).

• New: RETURN_MEDIA_AS_URL, MEDIA_ENDPOINT and MEDIA_URL allow for serving files at a dedicated media
endpoint while urls are returned in document media fields (Daniel Lytkin.)

132 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• New: etag_ignore_fields. Resource setting with a list of fields belonging to the schema that won’t be used
to compute the ETag value. Defaults to None (Olivier Carrère.)

• Change: when HATEOAS is off the home endpoint will respond with 200 OK instead of 404 Not Found
(Stratos Gerakakis).

• Change: PUT does not return 404 if a document URL does not exist. It will attempt to create the document
instead. Set UPSET_ON_PUT to False to disable this behaviour and get a 404 instead.

• Change: A PATCH including an ID_FIELD field which value is different than the original will get a 400 Bad
Request, along with an explanation in the message body that the field is immutable. Previously, it would get an
unknown field validation error.

• Dev: Improve GET perfomance on large versioned documents (Nick Park.)

• Dev: The MediaStorage base class now accepts the active resource as an argument for its methods. This allows
data-layers to avoid resorting to the Flask request object to determine the active resource. To preserve backward
compatibility the new resource argument defaults to None (Magdas Adrian).

• Dev: The Mongo data-layer is not dependant on the Flask request object anymore. It will still fallback to it if the
resource argument is None. Closes #632. (Magdas Adrian).

• Fix: store versions in the same mongo collection when datasource is used (Magdas Adrian).

• Fix: Update serialize to gracefully handle non-dictionary values in dict type fields (Nick Park).

• Fix: changes to the updates argument, applied by callbacks hooked to the on_updated event, were not persisted
to the database (Magdas Adrian). Closes #682.

• Fix: Changes applied to the updates argument``on_updated`` returns the whole updated document. Previously,
it was only returning the updates sent with the request. Closes #682.

• Fix: Replace the Cerberus rule keyschema, now deprecated, with the new propertyschema (Julian Hille).

• Fix: some error message are not filtered out of debug mode anymore, as they are useful for users and do not leak
information. Closes #671 (Sebastien Estienne).

• Fix: reinforce Content-Type Header handling to avoid possible crash when it is missing (Sebastien Estienne).

• Fix: some schema errors were not being reported as SchemaError exceptions. A more generic ‘DOMAIN missing
or wrong’ message was returned instead.

• Fix: When versioning is enabled on a resource with a custom ID_FIELD, versioning documents will inherit their
ID from the versioned document, making any update of the document result in a DuplicateKeyError (Matthieu
Prat).

• Fix: Filter validation fails to validate query selectors that contain a value of the list data-type, which is not a list
of sub-queries. See #674 (Matthieu Prat).

• Fix: _validate_dependencies always returns None.

• Fix: 412 Precondition Failed does not return a JSON body. Closes #661.

• Fix: embedded_fields may point on a field that come from another embedded document. For example, ['a.
b.c', 'a.b', 'a'] (Gonéri Le Bouder).

• Fix: add handling of sub-resource resolving for PUT method (Olivier Poitrey).

• Fix: dependencies rule would mistakenly validate documents when target fields happened to also have a
default value.

• Fix: According to RFC2617 the separator should be (=) instead of (:). This caused at least Chrome not to prompt
user for the credentials, and not to send the Authorization header even when credentials were in the url (Samuli
Tuomola).

2.18. Changelog 133



Eve Documentation, Release 2.1.0

• Fix: make sure unique validation rule is consistent between HTTP methods. A field value must be unique within
the datasource, regardless of the user who created it. Closes #646.

• Fix: OpLog domain entry is not created if OPLOG_ENDPOINT is None. Closes #628.

• Fix: Do not overwrite ID_FIELD as it is not a sub resource. See #641 for details (Olivier Poitrey).

• Fix: ETag computation crash when non-standard json serializers are used (Kevin Roy.)

• Fix: Remove duplicate item in Mongo operators list. Closes #619.

• Fix: Versioning: invalidate cache when _latest_version changes in versioned doc (Nick Park.)

• Fix: snippet in account management tutorial (xgddsg.)

• Fix: MONGO_REPLICA_SET and other significant Flask-PyMongo settings have been added to the documentation.
Closes #615.

• Fix: Serialization of lists of lists (Nick Park.)

• Fix: Make sure original is not modified during PATCH. Closes #611 (Petr Jašek.)

• Fix: Route parameters are applied to new documents before they are validated. This ensures that documents with
required fields will be populated before they are validated. Addresses #354. (Matthew Ellison.)

• Fix: GridFSMediaStorage does not save filename. Closes #605 (Sam Luu).

• Fix: Reinforce GeoJSON validation (Joakim Uddholm.)

• Fix: Geopoint coordinates do not accept integers. Closes #591 (Joakim Uddholm.)

• Fix: OpLog enabled makes PUT return wrong Etag. Closes #590.

• Update: Cerberus 0.9.2 is now required.

• Update: PyMongo 2.8 is now required (which in turn supports MongoDB 3.0)

Version 0.5.3

Released on 17 March, 2015.

• Fix: Support for Cerberus 0.8.1.

• Fix: Don’t block on first field serialization exception. Closes #568.

• Fix: Ignore read-only fields in PUT requests when their values aren’t changed compared to the stored document
(Bjorn Andersson.)

• Docs: replace file with media type. Closes #566.

Version 0.5.2

Released on 23 Feb, 2015. Codename: ‘Giulia’.

• Fix: hardening of database concurrency checks. See #561 (Olivier Carrère.)

• Fix: PATCH and PUT do not include Etag header (Marcus Cobden.)

• Fix: endpoint-level authentication crash when a callable is passed. Closes #558.

• Fix: serialization of keyschema fields with objetid values. Closes #525.

• Fix: typos in schema rules might lead to arbitrary payloads being validated (Emmanuel Leblond.)

• Fix: ObjectId value in ID field of type string (Jaroslav Semančík.)

134 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• Fix: User Restricted Resource Access does not work with HMAC Auth classes.

• Fix: Crash when embedded is used on subdocument with a missing field (Emmanuel Leblond.)

• Docs: add MONGO_URI as an alternative to other MongoDB connection options. Closes #551.

• Change: Werkzeug 0.10.1 is now required.

• Change: DataLayer API methods update() and replace() have a new original argument.

Version 0.5.1

Released on 16 Jan, 2015.

• Fix: dependencies with value checking seem broken (#547.)

• Fix: documentation typo (Marc Abramowitz.)

• Fix: pretty url for regex with a colon in the expression (Magdas Adrian.)

Version 0.5

Released on 12 Jan, 2015.

• New: Operations Log (http://python-eve.org/features#operations-log.)

• New: GeoJSON (http://python-eve.org/features.html#geojson) (Juan Madurga.)

• New: Internal Resources (http://python-eve.org/features#internal-resources) (Magdas Adrian.)

• New: Support for multiple origins when using CORS (Josh Villbrandt, #532.)

• New: Regexes are stripped out of HATEOAS urls when present. You now get games/<game_id>/images
where previously you would get games/<regex('[a-f0-9]{24}'):game_id>/images). Closes #466.

• New: JSON_SORT_KEYS enables JSON key sorting (Matt Creenan).

• New: Add the current query string to the self link for responses with multiple documents. Closes #464 (Jen
Montes).

• New: When document versioning is on, add ?version=<version_num> to HATEOAS self links. Also adds
pagination links for ?version=all and ?version=diffs requests when the number exceeds the max results.
Partially addresses #475 (Jen Montes).

• New: QUERY_WHERE allows to set the query parameter key for filters. Defaults to where.

• New: QUERY_SORT allows to set the query parameter key for sorting. Defaults to sort.

• New: QUERY_PAGE allows to set the query parameter key for pagination. Defaults to page.

• New: QUERY_PROJECTION allows to set the query parameter key for projections. Defaults to projection.

• New: QUERY_MAX_RESULTS allows to set the query parameter key for max results. Defaults to max_results.

• New: QUERY_EMBEDDED allows to set the query parameter key embedded documents. Defaults to embedded.

• New: Fire on_fetched events for version=all requests (Jen Montes).

• New: Support for CORS Access-Control-Expose-Headers (Christian Henke).

• New: post_internal() can be used for intenral post calls. This method is not rate limited, authentication is
not checked and pre-request events are not raised (Magdas Adrian).

• New: put_internal() can be used for intenral PUT calls. This method is not rate limited, authentication is
not checked and pre-request events are not raised (Kevin Funk).

2.18. Changelog 135

http://python-eve.org/features#operations-log
http://python-eve.org/features.html#geojson
http://python-eve.org/features#internal-resources


Eve Documentation, Release 2.1.0

• New: patch_internal() can be used for intenral PATCH calls. This method is not rate limited, authentication
is not checked and pre-request events are not raised (Kevin Funk).

• New: delete_internal() can be used for intenral DELETE calls. This method is not rate limited, authenti-
cation is not checked and pre-request events are not raised (Kevin Funk).

• New: Add an option to _internal methods to skip payload validation (Olivier Poitrey).

• New: Comma delimited sort syntax in queries. The MongoDB data layer now also supports queries like ?
sort=lastname,-age. Addresses #443.

• New: Add extra 4xx response codes for proper handling. Only 405 Method not allowed, 406 Not acceptable,
409 Conflict, and 410 Gone have been added to the list (Kurt Doherty).

• New: Add serializers for integer and float types (Grisha K.)

• New: dev-requirements.txt added to the repo.

• New: Embedding of documents by references located in any subdocuments. For example, query
embedded={"user.friends":1} will return a document with “user” and all his “friends” embedded, but only
if user is a subdocument and friends is a list of references (Dmitry Anoshin).

• New: Allow mongoengine to work properly with cursor counts (Johan Bloemberg)

• New: ALLOW_UNKNOWN allows unknown fields to be read, not only written as before. Closes #397 and #250.

• New: VALIDATION_ERROR_STATUS allows setting of the HTTP status code to use for validation errors. Defaults
to 422 (Olivier Poitrey).

• New: Support for sub-document projections. Fixes #182 (Olivier Poitrey).

• New: Return 409 Conflict on pymongo DuplicateKeyError for POST requests, as already happens with
PUT requests (Matt Creenan, #537.)

• Change: DELETE returns 204 NoContent on a successful delete.

• Change: SERVER_NAME removed as it is not needed anymore.

• Change: URL_PROTOCOL removed as it is not needed anymore.

• Change: HATEOAS links are now relative to the API root. Closes #398 #401.

• Change: If-Modified-Since has been disabled on resource (collections) endpoints. Same functionality is available
with a ?where={"_udpated": {"$gt": "<RFC1123 date>"}} request. The OpLog also allows retrieving
detailed changes happened at any endpoint, deleted documents included. Closes #334.

• Change: etags are now persisted with the documents. This ensures that etags are consistent across queries, even
when projection queries are issued. Please note that etags will only be stored along with new documents created
and/or edited via API methods (POST/PUT/PATCH). Documents inserted by other means and those stored with
v0.4 and below will keep working as previously: their etags will be computed on-the-fly and you will get still be
getting inconsistent etags when projection queries are issued. Closes #369.

• Change: XML item, meta and link nodes are now ordered. Closes #441.

• Change: put method signature for MediaStorage base class has been updated. filemame is now optional.
Closes #414.

• Change: CORS behavior to be compatible with browsers (Chrome). Eve is now echoing back the contents of the
Origin header if said content is whitelisted in X_DOMAINS. This also safer as it avoids exposing internal server
configuration. Closes #408. This commit was carefully handcrafed on a flight to EuroPython 2014.

• Change: Specify a range of dependant package versions. #379 (James Stewart).

• Change: Cerberus 0.8 is now required.

• Change: pymongo v2.7.2 is now required.

136 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• Change: simplejson v3.6.5 is now required.

• Change: update dev-requirements.txt to most recent tools available.

• Fix: add README.rst to MANIFEST.in (Niall Donegan.)

• Fix: LICENSE variable in setup.py should be “shortstring”. Closes #540 (Niall Donegan.)

• Fix: PATCH on fields with original value of None (Marcus Cobden, #534).

• Fix: Fix impossible version ranges in setup.py (Marcus Cobden, #531.)

• Fix: Bug with expanding lists of roles, compromising authorization (Mikael Berg, #527)

• Fix: PATCH on subdocument fields does not overwrite the whole subdocument anymore. Closes #519.

• Fix: Added support for validation on field attribute with type list (Jorge Morales).

• Fix: Fix a serialization bug with integer and float when value is 0 (Olivier Poitrey).

• Fix: Custom ID fields tutorial: if custom ID fields are being used, then MongoDB/Eve won’t be able to create
them automatically as it does with the ObjectId default type. Closes #511.

• Fix: Dependencies with default values were reported as missing if omitted. Closes #353.

• Fix: Dependencies always fails on PATCH if dependent field isn’t part of the update. #363.

• Fix: client projections work when allow_unknown is active. Closes #497.

• Fix: datasource projections are active when allow_unknown is active. closes #497.

• Fix: Properly serialize nullable floats and integers. Closes #469.

• Fix: _mongotize() turns non-ObjectId strings (but not unicode) into ObjectIds. Closes #508 (Or Neeman).

• Fix: Fix validation of read-only fields inside dicts. Closes #474 (Arnau Orriols).

• Fix: Parent and collection links follow the scheme described in #475 (Jen Montes).

• Fix: Ignore read-only fields in PATCH requests when their values aren’t changed compared to the stored document.
Closes #479.

• Fix: Allow EVE_SETTINGS envvar to be used exclusively. Previously, a settings file in the working directory was
always required. Closes #461.

• Fix: exception when trying to set nullable media field to null (Daniel Lytkin)

• Fix: Add missing $options and $list MongoDB operators to the allowed list (Jaroslav Semančík).

• Fix: Get document when it is missing embedded media. In case you try to embedd a document which has media
fields and that document has been deleted, you would get an error (Petr Jašek).

• Fix: fix additional lookup regex in RESTful Account Management tutorial (Ashley Roach).

• Fix: utils.weak_date always returns a RFC-1123 date (Petr Jašek).

• Fix: Can’t embed a ressource with a custom _id (non ObjectId). Closes #427.

• Fix: Do not follow DATE_FORMAT for HTTP headers. Closes #429 (Olivier Poitrey).

• Fix: Fix app initialization with resource level versioning #409 (Sebastián Magrí).

• Fix: KeyError when trying to use embedding on a field that is missing from document. It was fixed earlier in
#319, but came back again after new embedding mechanism (Daniel Lytkin).

• Fix: Support for list of strings as default value for fields (hansotronic).

• Fix: Media fields are now properly returned even in embedded documents. Closes #305.

• Fix: auth in domain configuration can be either a callable or a class instance (Gino Zhang).

2.18. Changelog 137



Eve Documentation, Release 2.1.0

• Fix: Schema definition: a default value of [] for a list causes IndexError. Closes #417.

• Fix: Close file handles in setup.py (Harro van der Klauw)

• Fix: Querying a collection should always return pagination information (even when no data is being returned).
Closes #415.

• Fix: Recursively validate the whole query string.

• Fix: If the data layer supports a list of allowed query operators, take them into consideration when validating a
query string. Closes #388.

• Fix: Abort with 400 if unsupported query operators are used. Closes #387.

• Fix: Return the error if a blacklisted MongoDB operator is used in a query (debug mode).

• Fix: Invalid sort syntax raises 500 instead of 400. Addresses #378.

• Fix: Fix serialization when type is missing in schema. #404 (Jaroslav Semančík).

• Fix: When PUTting or PATCHing media fields, they would not be properly replaced as needed (Stanislav Heller).

• Fix: test_get_sort_disabled occasional failure.

• Fix: A POST with an empty array leads to a server crash. Now returns a 400 error isntead and ensure the server
won’t crash in case of mongo invalid operations (Olivier Poitrey).

• Fix: PATCH and PUT don’t respect flask.abort() in a pre-update event. Closes #395 (Christopher Larsen).

• Fix: Validating keyschema rules would cause a TypeError since 0.4. Closes pyeve/cerberus#48.

• Fix: Crash if client projection is not a dict #390 (Olivier Poitrey).

• Fix: Server crash in case of invalid “where” syntax #386 (Olivier Poitrey).

Version 0.4

Released on 20 June, 2014.

• [new] You can now start the app without any resource defined and use app.register_resource later as needed
(Petr Jašek).

• [new] Data layer is now usable outside request context, for example within a Celery task where there’s no request
context (Petr Jašek).

• [new][change] Add pagination info to get results whatever the HATEOAS status. Closes #355 (Olivier Poitrey).

• [new] Ensure all errors return a parseable body (JSON or XML). Closes #365 (Olivier Poitrey).

• [new] Apply sub-request route’s params to the created document if matching the schema, e.g. a POST on /
people/1234.../invoices will set the contact_id field to 1234. . . so created invoice is automatically
associated with the parent resource (Olivier Poitrey).

• [new] Allow some more HTTP errors (403 and 404) to be thrown from db hooks (Olivier Poitrey).

• [new] ALLOWED_READ_ROLES. A list of allowed roles for resource endpoints with GET and OPTIONS methods
(Olivier Poitrey).

• [new] ALLOWED_WRITE_ROLES. A list of allowed roles for resource endpoints with POST, PUT and DELETE
methods (Olivier Poitrey).

• [new] ALLOWED_ITEM_READ_ROLES. A list of allowed roles for item endpoints with GET and OPTIONS methods
(Olivier Poitrey).

• [new] ALLOWED_ITEM_WRITE_ROLES. A list of allowed roles for item endpoints with PUT, PATCH and DELETE
methods (Olivier Poitrey).

138 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• [new] ‘dependencies’ validation rule.

• [new] ‘keyschema’ validation rule.

• [new] ‘regex’ validation rule.

• [new] ‘set’ as a core data type.

• [new] ‘min’ and ‘max’ now apply to floats and numbers too.

• [new] File Storage. EXTENDED_MEDIA_INFO allows a list of meta fields (file properties) to forward from the file
upload driver (Ben Demaree).

• [new] Python 3.4 is now supported.

• [new] Support for default values in documents with more than one level of data (Javier Gonel).

• [new] Ability to send entire document in write responses. BANDWITH_SAVER aka Coherence Mode (Josh Vill-
brandt).

• [new] on_pre_<METHOD> events expose the lookup dictionary which allows for setting up dynamic database
lookups on both resource and item endpoints.

• [new] Return a 400 response on pymongo DuplicateKeyError, with exception message if debug mode is on
(boosh).

• [new] PyPy officially supported and tested (Javier Gonel).

• [new] tox support (Javier Gonel).

• [new] Post database events (Javier Gonel). Addresses #272.

• [new] Versioned Documents (Josh Villbrandt). Closes #224.

• [new] Python trove classifiers added to setup.py.

• [new] Client projections are also honored at item endpoints.

• [new] validate that ID_FIELD is not set as a resource auth_field. Addresses #266.

• [new] URL_PROTOCOL defines the HTTP protocol used when building HATEOAS links. Defaults to '' for rela-
tive paths (Junior Vidotti).

• [new] on_delete_item and on_deleted_item is raised on DELETE requests sent to document endpoints.
Addresses #232.

• [new] on_delete_resource and on_deleted_resource is raised on DELETE requests sent to resource end-
points. Addresses #232.

• [new] on_update is raised on PATCH requests, when a document is about to be updated on the database. Ad-
dresses #232.

• [new] on_replace is raised on PUT requests, when a document is about to be replaced on the database. Ad-
dresses #232.

• [new] auth constructor argument accepts either a class instance or a callable. Closes #248.

• [change] Cerberus 0.7.2 is now required.

• [change] Jinja2 2.7.3 is now required.

• [change] Werkzeug 0.9.6 is now required.

• [change] simplejson 3.5.2 is now required.

• [change] itsdangerous 0.24 is now required. Addresses #378.

• [change] Events 0.2.1 is now required.

2.18. Changelog 139



Eve Documentation, Release 2.1.0

• [change] MarkupSafe 0.23 is now required.

• [change] For bulk and non-bulk inserts, response status now always either 201 when everything was ok or 400
when something went wrong. For bulk inserts, if at least one document doesn’t validate, the whole request is
rejected, and none of the documents are inserted into the database. Additionnaly, this commit adopts the same
response format as collections: responses are always a dict with a _status field at its root and an eventual
_error object if _status is ERR to comply with #366. Documents status are stored in the _items field (Olivier
Poitrey).

• [change] Callbacks get whole json response on on_fetched. This allows for callbacks functions to alter the
whole payload, even when HATEOAS is enabled and _items and _links metafields are present.

• [change] on_insert is not raised anymore on PUT requests (replaced by above mentioned on_replace).

• [change] auth.request_auth_value is no more. Yay. See below.

• [change] auth.set_request_auth_value() allows to set the auth_field value for the current request.

• [change] auth.get_request_auth_value() allows to retrieve the auth_field value for the current request.

• [change] on_update(ed) and on_replace(ed) callbacks now receive both the original document and the
updates (Jaroslav Semančík).

• [change] Review event names (Javier Gonel).

• [fix] return 500 instead of 404 if CORS is enabled. Closes #381.

• [fix] Crash on GET requests on resource endpoints when ID_FIELD is missing on one or more documents.
Closes #351.

• [fix] Cannot change a nullable objectid type field to contain null. Closes #341.

• [fix] HATEOAS links as business unit values even when regexes are configured for the endpoint.

• [fix] Documentation improvements (Jen Montes).

• [fix] KeyError exception was raised when field specified in schema as embeddable was missing in a particular
document (Jaroslav Semančík).

• [fix] Tests on HEAD requests would very occasionally fail. See #316.

• [change] PyMongo 2.7.1 is now required.

• [fix] Automatic fields such as DATE_CREATD and DATE_CREATED are correctly handled in client projections (Josh
Villbrandt). Closes #282.

• [fix] Make codebase compliant with latest PEP8/flake8 release (Javier Gonel).

• [fix] If you had a media field, and set datasource projection to 0 for that field, the media would not be deleted.
Closes #284.

• [fix] tests cleanup (Javier Gonel).

• [fix] tests now run on any system without needing to set ulimit to a higher value (Javier Gonel).

• [fix] media files: don’t try to delete a field that does not exist (Taylor Brown).

• [fix] Occasional KeyError while building _media helper dict. See #271 (Alexander Hendorf).

• [fix] If-Modified-Since misbehaviour when a datasource filter is set. Closes #258.

• [fix] Trouble serializing list of dicts. Closes #265 and #244.

• [fix] HATEOAS item links are now coherent actual endpoint URL even when natural immutable keys are used in
URLs (Junior Vidotti). Closes #256.

140 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• [fix] Replaced ID_FIELD by item_lookup_field on self link. item_lookup_field will default to ID_FIELD if
blank.

Version 0.3

Released on 14 February, 2014.

• [fix] Serialization of sub-documents (Hannes Tiede). Closes #244.

• [new] X_MAX_AGE allows to configure CORS Access-Control-Max-Age (David Buchmann).

• [fix] GET with If-Modified-Since on list endpoint returns incorrect 304 if resource is empty. Closes #243.

• [change] POST will return 201 Created if at least one document was accepted for insertion; 200 OK otherwise
(meaning the request was accepted and processed). It is still client’s responsability to parse the response payload
to check if any document did not pass validation. Addresses #201 #202 #215.

• [new] number data type. Allows both integers and floats as field values.

• [fix] Using primary keys other than _id. Closes #237.

• [fix] Add tests for PUT when User Restricted Resource Access is active.

• [fix] Auth field not set if resource level authentication is set. Fixes #231.

• [fix] RateLimit check was occasionally failing and returning a 429 (John Deng).

• [change] Jinja2 2.7.2 is now required.

• [new] media files (images, pdf, etc.) can be uploaded as media document fields. When a document is requested,
eventual media files will be returned as Base64 strings. Upload is done via POST, PUT and PATCH using the
multipart/form-data content-type. For optmized performance, by default files are stored in GridFS, how-
ever custom MediaStorage classes can be provided to support alternative storage systems. Clients and API
maintainers can exploit the projections feature to include/exclude media fields from requests. For example, a re-
quest like /url/<id>?projection={"image": 0} will return the document without the image field. Also,
while setting a resource datasource it is possible to explicitly exclude media fields from standard responses
(clients will need to explicitly add them to the payload with ?projection={"image": 1}).

• [new] media type for schema fields.

• [new] media application argument. Allows to specify a media storage class to be used to store media files.
Defaults to GridFSMediaStorage.

• [new] GridFSMediaStorage class. Stores files into GridFS.

• [new] MediaStorage class provides a standardized API for storing files, along with a set of default behaviors
that all other storage systems can inherit or override as necessary.

• [new] file data type support and validation for resource schema.

• [new] multipart/form-data content-type is now supported for requests.

• [fix] Field exclusion (?projection={"fieldname": 0}) now supported in client projections. Remember,
mixing field inclusion and exclusion is still not supported by MongoDB.

• [fix] URL_PREFIX and API_VERSION are correctly reported in HATOEAS links.

• [fix] DELETE on sub-resources should only delete documents referenced by the parent. Closes #212.

• [fix] DELETE on a resource endpoint honors User-Restricted Resource Access. Closes #213.

• [new] JSON allows to enable/disable JSON responses. Defaults to True (JSON enabled).

• [new] XML allows to enable/disable XML responses. Defaults to True (XML enabled).

2.18. Changelog 141



Eve Documentation, Release 2.1.0

• [fix] XML properly honors _LINKS and _ITEMS settings.

• [fix] return all document fields when resource schema is empty.

• [new] pytest.ini for pytest support.

• [fix] All tests should now run with nose and pytest. Closes #209.

• [new] query_objectid_as_string resource setting. Defaults to False. Addresses #207.

• [new] ETAG allows to customize the etag field. Defaults to _etag.

• [change] etag is now _etag in all default response payloads (see above).

• [change] STATUS defaults to ‘_status’.

• [change] ISSUES defaults to ‘_issues’.

• [change] DATE_CREATED defaults to ‘_created’. Upgrade existing collections by running db.<collection>.
update({}, { $rename: { "created": "_created" } }, { multi: true }) in the mongo shell.
If an index exists on the field, drop it and create a new one using the new field name.

• [change] LAST_UPDATED defaults to ‘_updated’. Upgrade existing collections by running db.<collection>.
update({}, { $rename: { "updated": "_updated" } }, { multi: true }) in the mongo shell.
If an index exists on the field, drop it and create a new one usung the new field name.

• [change] Exclude etag from both response payload and headers if concurrency control is disabled (IF_MATCH
= False). Closes #205.

• [fix] Custom ID_FIELD would fail on update/insert methods. Fixes #203 (Jaroslav Semančík).

• [change] GET: when If-Modified-Since header is present, either no documents (304) or all docu-
ments (200) are sent per the HTTP spec. Original behavior can be achieved with: /resource?
where={"updated":{"$gt":"if-modified-since-date"}} (Josh Villbrandt).

• [change] Validation errors are now reported as a dictionary with offending fields as keys and issues descriptions
as values.

• [change] Cerberus v0.6 is now required.

Version 0.2

Released on 30 November, 2013.

• [new] Sub-Resources. It is now possible to configure endpoints such as: /companies/<company_id>/
invoices. Also, the corresponding item endpoints, such as /companies/<company_id>/invoices/
<invoice_id>, are available. All CRUD operations on these endpoints are allowed. Closes 156.

• [new] resource_title allows to customize the endpoint title (HATEOAS).

• [new][dev] extra cursor property, when present, will be added to GET responses (with same key). This feature
can be used by Eve extensions to inject proprietary data into the response stream (Petr Jašek).

• [new] IF_MATCH allows to disable checks for ETag matches on edit, replace and delete requests. If disabled,
requests without an If-Match header will be honored without returning a 403 error. Defaults to True (enabled by
default).

• [new] LINKS allows to customize the links field. Default to ‘_links’.

• [new] ITEMS allows to customize the items field. Default to ‘_items’.

• [new] STATUS allows to customize the status field. Default to ‘status’.

• [new] ISSUES allows to customize the issues field. Default to ‘issues’.

142 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• [new] Handling custom ID fields tutorial.

• [new] A new json_encoder initialization argument is available. It allows to pass custom JSONEncoder or
eve.io.BaseJSONEncoder to the Eve instance.

• [new] A new url_converters initialization argument is available. It allows to pass custom Flask url converters
to the Eve constructor.

• [new] ID_FIELD fields can now be of arbitrary types, not only ObjectIds. Thanks to Kelvin Hammond for
contributing to this one. Closes #136.

• [new] pre_<method> and pre_<method>_<resource> event hooks are now available. They are raised when
a request is received and before processing it. The resource involved and the Flask request object are returned to
the callback function (dccrazyboy).

• [new] embedded_fields activates default Embedded Resource Serialization on a list of selected document
fields. Eventual embedding requests by clients will be processed along with default embedding. In order for
default embedding to work, the field must be defined as embeddable, and embedding must be active for the
resource (with help from Christoph Witzany).

• [new] default_sort option added to the datasource resource setting. It allows to set default sorting for the
endpoint. Default sorting will be overriden by a client request that happens to include a ?sort argument within
the query string (with help from Christoph Witzany).

• [new] You can now choose to provide custom settings as a Python dictionary.

• [new] New method Eve.register_resource() for registering new resource after initialization of Eve object.
This is needed for simpler initialization API of all ORM/ODM extensions (Stanislav Heller).

• [change] Rely on Flask endpoints to map urls to resources.

• [change] For better consistency with new pre_<method> hooks, on_<method> event hooks have been renamed
to on_post_<method>.

• [change] Custom authentication classes can now be set at endpoint level. When set, an endpoint-level auth class
will override the eventual global level auth class. Authentication docs have been updated (and greatly revised)
accordingly. Closes #89.

• [change] JSON encoding is now handled at the DataLayer level allowing for specialized, granular, data-aware
encoding. Also, since the JSON encoder is now a class attribute, extensions can replace the pre-defined data
layer encoder with their own implementation. Closes #102.

• [fix] HMAC example and docs updated to align with new hmac in Python 2.7.3, which is only accepting bytes
string. Closes #199.

• [fix] Properly escape leaf values in XML responses (Florian Rathgeber).

• [fix] A read-only field with a default value would trigger a validation error on POST and PUT methods.

Version 0.1.1

Released on October 31th, 2013.

• DELETE now uses the original document ID_FIELD when issuing the delete command to the underlying data
layer (Xavi Cubillas).

• Embedded Resource Serialization also available at item endpoints (/invoices/<id>/?
embedded={'person':1}),

• collection (used when setting up a data relation, see Embedded Resource Serialization) has been renamed to
resource in order to avoid confusion between the Eve schema and underlying MongoDB collections.

2.18. Changelog 143



Eve Documentation, Release 2.1.0

• Nested endpoints. Endpoints with deep paths like /contacts/overseas can now function in conjuction with
top-level endpoints (/contacts). Endpoints are completely independent: each can allow item lookups (/
contacts/<id> and contacts/overseas/<id>) and different access methods. Previously, while you could
have complex urls, you could not get nested endpoints to work properly.

• PyMongo 2.6.3 is now supported.

• item-id wrappers have been removed from POST/PATCH/PUT requests and responses. Requests for single doc-
ument insertion/edition are now performed by just submitting the relevant document. Bulk insert requests are
performed by submitting a list of documents. The response to bulk requests is a list itself in which every list
item contains the state of the corresponding request document. Please note that this is a breaking change. Also
be aware that when the request content-type is x-www-form-urlencoded, single document insert is performed.
Closes #139.

• ObjectId are properly serialized on POST/PATCH/PUT methods.

• Queries on ObjectId and datetime values in nested documents.

• auth.user_id renamed to auth.request_auth_value for better consistency with the auth_field setting.
Closes #132 (Ryan Shea).

• Same behavior as Flask, SERVER_NAME now defaults to None. It allows much easier development on distant
machine that may changes IP (Ronan Delacroix).

• CORS support was not available for additional_lookup urls (Petr Jašek.)

• ‘default’ field values that could be assimilated to None (0, None, “”) would be ignored.

• POST and PUT would fail with 400 if there was no auth class while auth_field was set for a resource.

• Fix order of string arguments in exception message in flaskapp.validate_schema() (Roy Smith).

Version 0.1

Released on September 30th, 2013.

• PUT method for completely replace a document while keeping the same unique identifier. Closes #96.

• Embedded Resource Serialization. If a document field is referencing a document in another resource, clients can
request the referenced document to be embedded within the requested document (Bryan Cattle). Closes #68.

• “No trailing slash” URLs are now supported. Closes #118.

• HATEOAS is now optional and can be disabled both at global and resource level.

• X-HTTP-Method-Override supported for all HTTP Methods. Closes #95.

• HTTP method is now passed into authenticate() and check_auth() (Ken Carpenter). Closes #90 .

• Cleanup and hardening of User-Restricted Resource Access Edit (Bryan Cattle).

• Account Management tutorial updated to reflect the event hooks naming update introduced in v0.0.9.

• Some more Python 3 refactoring (Dong Wei Ming).

• Events 0.2.0 is now supported.

• PyMongo 2.6.2 is now supported.

• Cerberus 0.4.0 is now supported.

• Item GET on documents with non-existent ‘created’ field (because stored outside of API context) were not re-
turning a default value for the field.

144 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• Edits on documents with non-existent ‘created’ or ‘updated’ fields (because stored outside of the API context)
were returning 412 Precondition Failed. Closes #123.

• on_insert is raised when a PUT (replace action) is about to be performed. Closes #120.

• Installation on Windows with Python 3 was returning encoding errors.

• Fixed #99: malformed XML render when href includes forbidden URI/URL chars.

• Fixed a bug introduced with 0.0.9 and Python 3 support. Filters (?where) on datetime values were not working
when running on Python 2.x.

• Fixed some typos and minor grammatical errors all across the documentation (Ken Carpenter, Jean Boussier,
Kracekumar, Francisco Corrales Morales).

Version 0.0.9

Released on August 29, 2013

• PyMongo 2.6 is now supported.

• FILTERS boolean replaced by ALLOWED_FILTERS list which allows for explicit whitelisting of filter-enabled
fields (Bryan Cattle). Closes #78.

• Custom user ids for User-Restricted Resource Access, allowing for more flexibility and token revocation with
token-based authentication. Closes #73.

• AUTH_USERNAME_FIELD renamed to AUTH_FIELD.

• auth_username_field renamed to auth_field.

• BasicAuth and subclasses now support user_id property.

• Updated the event hooks naming system to be more robuts and consistent. Closes #80.

• To emphasize the fact that they are tied to a method, all on_<method> hooks now have <method> in uppercase.

• on_getting hook renamed to on_fetch_resource.

• on_getting_<resource> hook renamed to on_fetch_resource_<resource>

• on_getting_item hook renamed to on_fetch_item.

• on_getting_item_<item_title> hook renamed to on_fetch_item_<item_title>.

• on_posting hook renamed to on_insert.

• Datasource projections always include automatic fields (ID_FIELD, LAST_UPDATED, DATE_CREATED). Closes
#85.

• Public HTTP methods now override auth_username_field Edit. Closes #70 (Bryan Cattle).

• Response date fields are now using GMT instead of UTC. Closes #83.

• Handle the case of ‘additional_lookup’ field being an integer. If this is the case you can omit the ‘url’ key, as it
will be ignored, and the integer value correctly parsed.

• More informative HTTP error messages. Some more informative error messages have been added for HTTP
400/3/12 and 500 errors. The error messages only show if DEBUG==True (Bryan Cattle).

• on_getting(resource, documents) is now on_getting_resource(resource,
documents); on_getting_<resource>(documents) is now known as
``on_getting_resource_<resource>(documents) (Ryan Shea).

• Added a new event hook: on_getting_item_<title>(_id, document) (Ryan Shea).

2.18. Changelog 145



Eve Documentation, Release 2.1.0

• Allow auth_username_field to be set to ID_FIELD (Bryan Cattle).

• Python 3.3 is now supported.

• Flask 0.10.1 is now supported.

• Werkzeug 0.9.4 is now supported.

• Copyright finally updated to 2013.

Version 0.0.8

Released on July 25th 2013.

• Only run RateLimiting tests if redis-py is installed and redis-server is running.

• CORS Access-Control-Allow-Headers header support (Garrin Kimmell).

• CORS OPTIONS support for resource and items endpoints (Garrin Kimmell).

• float is now available as a data-type in the schema definition ruleset.

• nullable field schema rule is now available. If True the field value can be set to null. Defaults to False.

• v0.3.0 of Cerberus is now a requirement.

• on_getting, on_getting_<resource> and on_getting_item event hooks. These events are raised when
documents have just been read from the database and are about to be sent to the client. Registered callback
functions can eventually manipulate the documents as needed. Please be aware that last_modified and etag
headers will always be consistent with the state of the documents on the database (they won’t be updated to reflect
changes eventually applied by the callback functions). Closes #65.

• Documentation fix: AUTH_USERFIELD_NAME renamed to AUTH_USERNAME_FIELD (Julien Barbot).

• Responses to GET requests for resource endpoints now include a last item in the _links dictionary. The value
is a link to the last page available. The item itself is only provided if pagination is enabled and the page being
requested isn’t the last one. Closes #62.

• It is now possible to set the MongoDB write concern level at both global (MONGO_WRITE_CONCERN) and endpoint
(mongo_write_concern) levels. The value is a dictionary with all valid MongoDB write_concern settings (w,
wtimeout, j and fsync) as keys. {'w': 1} is the default, which is also MongoDB’s default setting.

• TestMininal class added to the test suite. This will allow to start the building of the tests for an application
based on Eve, by subclassing the TestMinimal class (Daniele Pizzolli).

Version 0.0.7

Released on June 18th 2013.

• Pinned Werkzeug requirement to v0.8.3 to avoid issues with the latest release which breaks backward compati-
bility (actually a Flask 0.9 requirements issue, which backtracked to Eve).

• Support for Rate Limiting on all HTTP methods. Closes #58. Please note: to successfully execute the tests in
‘eve.tests.methods.ratelimit.py`, a running redis server is needed.

• utils.request_method internal helper function added, which allowed for some nice code cleanup (DRY).

• Setting the default ‘field’ value would not happen if a ‘data_relation’ was nested deeper than the first schema
level. Fixes #60.

146 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

• Support for EXTRA_RESPONSE_FIELDS. It is now possible to configure a list of additonal document fields
that should be provided with POST responses. Normally only automatically handled fields (ID_FIELD,
LAST_UPDATED, DATE_CREATED, etag) are included in POST payloads. EXTRA_RESPONSE_FIELDS is a
global setting that will apply to all resource endpoint . Defaults to [], effectively disabling the feature.
extra_response_fields is a local resource setting and will override EXTRA_RESPONSE_FIELDS when
present.

• on_posting and on_posting_<resource> event hooks. on_posting and on_posting_<resource> events
are raised when documents are about to be stored. Among other things this allows callback functions to arbitrarily
update the documents being inserted. on_posting(resource, documents) is raised on every successful
POST while on_posting_<resource>(documents) is only raised when <resource> is being updated. In both
circumstances events will be raised only if at least one document passed validation and is going to be inserted.

• Flask native request.json is now used when decoding request payloads.

• resource argument added to Authorization classes. The check_auth() method of all classes in the eve.auth
package (BasicAuth, HMACAuth, TokenAuth) now supports the resource argument. This allows subclasses to
eventually build their custom authorization logic around the resource being accessed.

• MONGO_QUERY_BLACKLIST option added. Allows to blacklist mongo query operators that should not be allowed
in resource queries (?where=). Defaults to [‘$where’, ‘$regex’]. Mongo Javascript operators are disabled by
default as they might be used as vectors for injection attacks. Javascript queries also tend to be slow and generally
can be easily replaced with the (very rich) Mongo query dialect.

• MONGO_HOST defaults to ‘localhost’.

• MONGO_PORT defaults to 27017.

• Support alternative hosts/ports for the test suite (Paul Doucet).

Version 0.0.6

Released on May 13th 2013.

• Content-Type header now properly parsed when additional arguments are included (Ondrej Slinták).

• Only fields defined in the resource schema are now returned from the database. Closes #52.

• Default SERVER_NAME is now set to 127.0.0.1:5000.

• auth_username_field is honored even when there is no query in the request (Thomas Sileo).

• Pagination links in XML payloads are now properly escaped. Fixes #49.

• HEAD requests supported. Closes #48.

• Event Hooks. Each time a GET, POST, PATCH, DELETE method has been executed, both global on_<method>
and resource-level on_<method>_<resource> events will be raised. You can subscribe to these events with
multiple callback functions. Callbacks will receive the original flask.request object and the response payload as
arguments.

• Proper max_results handling in eve.utils.parse_request, refactored tests (Tomasz Jezierski).

• Projections. Projections are conditional queries where the client dictates which fields should be returned by the
API (Nicolas Bazire).

• ALLOW_UNKNOWN option, and the corresponding allow_options local setting, allow for a less strict schema
validation. Closes #34.

• ETags are now provided with POST responses. Closes #36.

• PATCH performance improvement: ETag is now computed in memory; performing an extra database lookup is
not needed anymore.

2.18. Changelog 147



Eve Documentation, Release 2.1.0

• Bulk Inserts on the database. POST method heavily refactored to take advantage of MongoDB native support for
Bulk Inserts. Please note: validation constraints are checked against the database, and not between the payload
documents themselves. This causes an interesting corner case: in the event of a multiple documents payload
where two or more documents carry the same value for a field where the unique constraint is set, the payload
will validate successfully, as there are no duplicates in the database (yet). If this is an issue, the client can always
send the documents once at a time for insertion, or validate locally before submitting the payload to the API.

• Responses to document GET requests now include the ETag in both the header and the payload. Closes #29.

• methods settings keyword renamed to resource_methods for coherence with the global RESOURCE_METHODS
(Nicolas Carlier).

Version 0.0.5

Released on April 11th 2013.

• Fixed an issue that apparently caused the test suite to only run successfully on the dev box. Thanks Chronidev
for reporting this.

• Referential integrity validation via the new data_relation schema keyword. Closes #25.

• Support for Content-Type: application/json for POST and PATCH methods. Closes #28.

• User-restricted resource access. Works in conjunction with Authentication. When enabled, users can only
read/update/delete resource items created by themselves. Can be switched on and off at global level via the
AUTH_USERFIELD_NAME keywork, or at single resource endpoints with the user_userfield_name keyword (the
latter will override the former). The keyword contains the actual name of the field used to store the username of
the user who created the resource item. Defaults to ‘’, which disables the feature (Thomas Sileo).

• PAGING_LIMIT keyword setting renamed to PAGINATION_LIMIT for better coherency with the new PAGINATION
keyword. This could break backward compatibility in some cases.

• PAGING_DEFAULT keyword settings renamed to PAGINATION_DEFAULT for better coherence with the new
PAGINATION keyword. This could break backward compatibility in some cases.

• ITEM_CACHE_CONTROL removed as it seems unnecessary at the moment.

• Added an example on how to handle events to perform custom actions. Closes #23 and #22.

• eve.validation_schema() now collects offending items and returns all of them into the exception message.
Closes #24.

• Filters (?where=), sorting (?sort=) and pagination (?page=10) can now be be disabled at both global and
endpoint level. Closes #7.

• CORS (Cross-Origin Resource Sharing) support. The new X-DOMAINS keywords allows API maintainers to
specify which domains are allowed to perform CORS requests. Allowed values are: None, a list of domains, or
‘*’ for a wide-open API. Closes #1.

• HMAC (Hash Message Authentication Code) based Autentication.

• Token Based Authentication, a variation of Basic Authentication. Closes #20.

• Orphan function removed (eve.methods.get.standard_links ).

• DATE_CREATED and LAST_UPDATED fields now show default values for documents created outside the API con-
text. Fixes #18.

148 Chapter 2. Funding Eve



Eve Documentation, Release 2.1.0

Version 0.0.4

Released on February 25th 2013.

• Consistent ETag computation between runs/instances. Closes #16.

• Support for Basic Authentication (RFC2617).

• Support for fine-tuning authentication with PUBLIC_METHODS and PUBLIC_ITEM_METHODS. By default, access
is restricted to all endpoints, for all HTTP verbs (methods), effectively locking down the whole API.

• Supporto for role-based access control with ALLOWED_ROLES and allowed_roles.

• Support for all standard Flask initialization parameters.

• Support for default values in resource fields. The new default keyword can now be used when defining a field
rule set. Please note: currently default values are supported only for main document fields. Default values for
fields in embedded documents will be ignored.

• Multiple API endpoints can now target the same database collection. For example now you can set both /
admins/ and /users/ to read and write from the same collection on the db, people. The new datasource
setting allows to explicitly link API resources to database collections. It is a dictionary with two allowed keys:
source and filter. source dictates the database collection consumed by the resource. filter is the underlying query,
applied by the API when retrieving and validating data for the resource. Previously, the resource name would
dictate the linked datasource (and of course you could not have two resources with the same name). This remains
the default behaviour: if you omit the datasource setting for a resource, its name will be used to determine the
database collection.

• It is now possibile to set predefined db filters for each resource. Predefined filters run on top of user queries
(GET requests with where clauses) and standard conditional requests (If-Modified-Since, etc.) Please note
that datasource filters are applied on GET, PATCH and DELETE requests. If your resource allows for POST re-
quests (document insertions), then you will probably want to set the validation rules accordingly (in our example,
‘username’ should probably be a required field).

• JSON-Datetime dependency removed.

• Support for Cerberus v0.0.3 and later.

• Support for Flask-PyMongo v0.2.0 and later.

• Repeated XML requests to the same endpoint could occasionally return an Internal Server Error (Fixes #8).

Version 0.0.3

Released on January 22th 2013.

• XML rendering love. Lots of love.

• JSON links are always wrapped in a _links dictionary. Key values match the relation between the item being
represented and the linked resource.

• Streamlined JSON responses. Superflous response root key has been removed from JSON payloads. GET
requests to resource endpoints: items are now wrapped with an _items list. GET requests to item endpoints:
item is now at root level, with no wrappers around it.

• Support for API versioning through the new API_VERSION configuration setting.

• Boolean values in request forms are now correctly parsed.

• Tests now run under Python 2.6.

2.18. Changelog 149



Eve Documentation, Release 2.1.0

Version 0.0.2

Released on November 27th 2012.

• Homepage/api entry point resource links fixed. They had bad ‘href’ tags which also caused XML validation
issues when processing responses (especially when accessing the API via browser).

• Version number in ‘Server’ response headers.

• Added support for DELETE at resource endpoints. Expected behavior: will delete all items in the collection.
Disabled by default.

• eve.io.mongo.Validator now supports Validator signature, allowing for further subclassing.

Version 0.0.1

Released on November 20th 2012.

• First public preview release.

Note: This documentation is under constant development. Please refer to the links on the sidebar for more information.

150 Chapter 2. Funding Eve

https://docs.python-cerberus.org/en/latest/api.html#cerberus.Validator


INDEX

E
environment variable

EVE_SETTINGS, 50, 51
EVE_SETTINGS, 50, 51

151


	Eve is Simple
	Funding Eve
	Foreword
	Philosophy
	A little context
	REST, Flask and MongoDB
	BSD License

	REST API for Humans
	Conferences

	Installation
	Development Version

	Quickstart
	Prerequisites
	A Minimal Application
	Database Interlude
	A More Complex Application

	Features
	Emphasis on REST
	Full range of CRUD operations
	Overriding HTTP Methods

	Customizable resource endpoints
	Sub Resources

	Customizable, multiple item endpoints
	Filtering
	Pretty Printing
	Sorting
	Pagination
	HATEOAS
	Disabling HATEOAS

	Rendering
	Conditional Requests
	Data Integrity and Concurrency Control
	Disabling concurrency control

	Bulk Inserts
	Data Validation
	Extensible Data Validation
	Editing a Document (PATCH)
	Resource-level Cache Control
	API Versioning
	Document Versioning
	Authentication
	CORS Cross-Origin Resource Sharing
	JSONP Support
	Read-only by default
	Default and Nullable Values
	Predefined Database Filters
	Projections
	Embedded Resource Serialization
	Predefined Resource Serialization
	Limitations

	Soft Delete
	Behavior
	Restoring Soft Deleted Items
	Versioning
	Data Relations
	Considerations

	Event Hooks
	Pre-Request Event Hooks
	Dynamic Lookup Filters

	Post-Request Event Hooks
	Database event hooks
	Fetch Events
	Insert Events
	Replace Events
	Update Events
	Delete Events
	Items
	Resources


	Aggregation event hooks

	Rate Limiting
	Custom ID Fields
	File Storage
	Serving media files as Base64 strings
	Serving media files at a dedicated endpoint
	Partial media downloads
	Leveraging Projections to optimize the handling of media files
	Note on media files as multipart/form-data
	Using lists of media

	GeoJSON
	Querying GeoJSON Data

	Internal Resources
	Enhanced Logging
	Operations Log
	How is the oplog operated?
	The Oplog endpoint
	Extending Oplog entries

	The Schema Endpoint
	MongoDB Aggregation Framework
	Limitations

	MongoDB and SQL Support
	Powered by Flask

	Configuration
	Configuration With Files
	Configuration With a Dictionary
	Development / Production
	Global Configuration
	Domain Configuration
	Resource / Item Endpoints

	Schema Definition
	Advanced Datasource Patterns
	Predefined Database Filters
	Multiple API Endpoints, One Datasource
	Limiting the Fieldset Exposed by the API Endpoint


	Data Validation
	Extending Data Validation
	Custom Validation Rules
	Custom Data Types
	Allowing the Unknown
	Schema validation

	Authentication and Authorization
	Introduction to Security
	Global Authentication
	Endpoint-level Authentication
	Global Endpoint Security
	Custom Endpoint Security
	Basic Authentication
	Basic Authentication with bcrypt
	Basic Authentication with SHA1/HMAC

	Token-Based Authentication
	HMAC Authentication
	How HMAC Authentication Works
	HMAC Example

	Role Based Access Control
	User-Restricted Resource Access
	Auth-driven Database Access
	OAuth2 Integration

	Funding
	Support Eve development
	Eve Course at TalkPython Training
	Custom Sponsorship and Consulting
	Backers
	Generous Backers


	Tutorials
	RESTful Account Management
	Accounts with Basic Authentication
	1. The /accounts endpoint
	2. Securing the /accounts/ endpoint
	2a. Hard-coding our way in
	2b. User Roles Access Control

	3. Securing other API endpoints
	4. Only allowing access to account resources

	Accounts with Token Authentication
	1. The /accounts/ endpoint
	2. Securing the /accounts/ endpoint
	3. Building custom tokens on account creation
	4. Returning the token with the response
	5. Securing other API endpoints
	6. Only allowing access to account resources

	Basic vs Token: Final Considerations

	Handling custom ID fields
	Handling UUID fields
	Custom JSONEncoder
	UUID Validation
	UUID URLs
	Passing the UUID juice to Eve


	Learn Eve at TalkPython Training

	Snippets
	Available Snippets
	Using Eve Event Hooks from your Blueprint
	Supporting both list-level and item-level CRUD operations
	main.py
	settings.py
	Usage


	Add your snippet
	Snippet Template


	Extensions
	Eve-Auth-JWT
	Eve-Elastic
	Eve-Healthcheck
	Eve-Mocker
	Eve-Mongoengine
	Eve-Neo4j
	Eve-OAuth2
	Eve-SQLAlchemy
	Eve-Swagger
	Eve.NET
	EveGenie
	REST Layer for Golang

	How to contribute
	Support questions
	Reporting issues
	Submitting patches
	First time setup
	Start coding
	Running the tests
	Building the docs
	make targets

	First time contributor?
	Don’t know where to start?

	Support
	Stack Overflow
	Mailing List
	IRC
	File an Issue

	Updates
	Blog
	Twitter
	Mailing List
	GitHub

	Authors
	Development Lead
	Patches and Contributions

	Licensing
	BSD License
	Artwork License

	Changelog
	In Development
	Version v2.1.0
	New
	Fixed

	Version v2.0.4
	Fixed

	Version v2.0.3
	Fixed

	Version v2.0.2
	Fixed

	Version v2.0.1
	Fixed

	Version v2.0
	Breaking
	New
	Fixed

	Version 1.1.5
	Fixed

	Version 1.1.4
	Fixed

	Version 1.1.3
	Fixed

	Version 1.1.2
	Fixed

	Version 1.1.1
	Fixed

	Version 1.1
	New
	Fixed

	Version 1.0.1
	Version 1.0
	New
	Fixed

	Version 0.9.2
	Fixed

	Version 0.9.1
	New
	Fixed
	Improved
	Breaking Changes

	Version 0.9
	Breaking changes
	New
	Fixed
	Improved

	Version 0.8.1
	New
	Fixed
	Improved
	Docs

	Version 0.8
	Breaking Changes
	Version 0.7.10
	Version 0.7.9
	Version 0.7.8
	Version 0.7.7
	Version 0.7.6
	Version 0.7.5
	Version 0.7.4
	Version 0.7.3
	Version 0.7.2
	Version 0.7.1
	Version 0.7
	Version 0.6.4
	Version 0.6.3
	Version 0.6.2
	Version 0.6.1
	Version 0.6
	Version 0.5.3
	Version 0.5.2
	Version 0.5.1
	Version 0.5
	Version 0.4
	Version 0.3
	Version 0.2
	Version 0.1.1
	Version 0.1
	Version 0.0.9
	Version 0.0.8
	Version 0.0.7
	Version 0.0.6
	Version 0.0.5
	Version 0.0.4
	Version 0.0.3
	Version 0.0.2
	Version 0.0.1



	Index

